Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 97, Issue 3, paper published in the English version journal (Mi mzm10920)  

This article is cited in 12 scientific papers (total in 12 papers)

Papers published in the English version of the journal

Gas–Amorphous Solid and Liquid–Amorphous Solid Phase Transitions. Introduction of Negative Mass and Pressure from the Mathematical Viewpoint

V. P. Maslovab

a Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, Russia
b National Research University Higher School of Economics, Moscow, Russia
Citations (12)
Abstract: We construct gas and liquid binodals assuming that both the gas and the liquid branch of the spinodal are given. To determine how the number of degrees of freedom depends on temperature, we use the main formula expressing the compressibility factor via the ratio of two Riemann functions. The behavior of the second virial coefficient is studied for a given spinodal, which serves as an analog of caustics. The gas– and liquid–amorphous solid transitions are considered on the second sheet. An argument in favor of the mapping of the second sheet onto the negative quadrant {P,Z} is presented.
Keywords: Binodal, spinodal, compressibility factor, number of degrees of freedom, virial coefficient, second sheet, negative pressure, negative mass.
Received: 28.12.2014
English version:
Mathematical Notes, 2015, Volume 97, Issue 3, Pages 423–430
DOI: https://doi.org/10.1134/S000143461503013X
Bibliographic databases:
Document Type: Article
Language: English
Linking options:
  • https://www.mathnet.ru/eng/mzm10920
  • This publication is cited in the following 12 articles:
    1. V. P. Maslov, “Remarks on Number Theory and Thermodynamics Underlying Statistical Distributions in Languages”, Math. Notes, 101:4 (2017), 660–665  mathnet  mathnet  crossref  isi  scopus
    2. Maslov V.P., “New distributions in thermodynamics”, Tech. Phys. Lett., 42:9 (2016), 951–954  crossref  mathscinet  isi  elib  scopus
    3. Maslov V.P., “Thermodynamics, idempotent analysis, and tropical geometry as a return to primitivism”, Russ. J. Math. Phys., 23:2 (2016), 278–280  crossref  mathscinet  zmath  isi  elib  scopus
    4. Maslov V.P., “Thermodynamics and tropical mathematics. Definition of quasistatistical processes”, Russ. J. Math. Phys., 23:1 (2016), 101–114  crossref  mathscinet  zmath  isi  elib  scopus
    5. V. P. Maslov, A. V. Maslov, “Generalized Notion of “Liquid” and Phase Transition to Turbulence”, Math. Notes, 99:1 (2016), 91–94  mathnet  mathnet  crossref  isi  scopus
    6. V. P. Maslov, “New Approach to Classical Thermodynamics”, Math. Notes, 100:1 (2016), 154–185  mathnet  mathnet  crossref  isi  scopus
    7. Maslov V.P., “Locally Ideal Liquid”, Russ. J. Math. Phys., 22:3 (2015), 361–373  crossref  mathscinet  zmath  isi  elib  scopus
    8. Maslov V.P., “Van der Waals Equation From the Viewpoint of Probability Distribution and the Triple Point as the Critical Point of the Liquid-To-Solid Transition”, Russ. J. Math. Phys., 22:2 (2015), 188–200  crossref  mathscinet  zmath  isi  elib  scopus
    9. V. P. Maslov, “On the Semiclassical Transition in the Quantum Gibbs Distribution”, Math. Notes, 97:4 (2015), 565–574  mathnet  mathnet  crossref  isi  scopus
    10. V. P. Maslov, T. V. Maslova, “New Thermodynamics and Frost Cleft in Conifers”, Math. Notes, 98:2 (2015), 343–347  mathnet  mathnet  crossref  isi  scopus
    11. V. P. Maslov, “Probability Distribution for a Hard Liquid”, Math. Notes, 97:6 (2015), 909–918  mathnet  mathnet  crossref  isi  scopus
    12. V. P. Maslov, “Case of Less Than Two Degrees of Freedom, Negative Pressure, and the Fermi–Dirac Distribution for a Hard Liquid”, Math. Notes, 98:1 (2015), 138–157  mathnet  mathnet  crossref  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:185
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025