Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 98, Issue 6, Pages 923–929
DOI: https://doi.org/10.4213/mzm10909
(Mi mzm10909)
 

This article is cited in 2 scientific papers (total in 2 papers)

Attainment of Maximum Cube-to-Linear Ratio for Three-Dimensional Peano Curves

E. V. Shchepin

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (447 kB) Citations (2)
References:
Abstract: The class of so-called $q$-adic Peano curves is defined, which is large enough to include the polyfractal curves. The cube-to-linear ratio for this class attains its maximum value, which can be effectively determined by an exhaustive search implementable on modern computers.
Keywords: three-dimensional Peano curve, $q$-adic Peano curve, fractal Peano curve, polyfractal Peano curve, fractal genus, cube-to-linear ratio, square-to-linear ratio.
Received: 17.06.2015
English version:
Mathematical Notes, 2015, Volume 98, Issue 6, Pages 971–976
DOI: https://doi.org/10.1134/S0001434615110292
Bibliographic databases:
Document Type: Article
UDC: 519
Language: Russian
Citation: E. V. Shchepin, “Attainment of Maximum Cube-to-Linear Ratio for Three-Dimensional Peano Curves”, Mat. Zametki, 98:6 (2015), 923–929; Math. Notes, 98:6 (2015), 971–976
Citation in format AMSBIB
\Bibitem{Shc15}
\by E.~V.~Shchepin
\paper Attainment of Maximum Cube-to-Linear Ratio for Three-Dimensional Peano Curves
\jour Mat. Zametki
\yr 2015
\vol 98
\issue 6
\pages 923--929
\mathnet{http://mi.mathnet.ru/mzm10909}
\crossref{https://doi.org/10.4213/mzm10909}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438547}
\elib{https://elibrary.ru/item.asp?id=24850272}
\transl
\jour Math. Notes
\yr 2015
\vol 98
\issue 6
\pages 971--976
\crossref{https://doi.org/10.1134/S0001434615110292}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000369701000030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953303356}
Linking options:
  • https://www.mathnet.ru/eng/mzm10909
  • https://doi.org/10.4213/mzm10909
  • https://www.mathnet.ru/eng/mzm/v98/i6/p923
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:357
    Full-text PDF :131
    References:35
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024