aLaboratory of Fundamental and Applied Mathematics of Oran (LMFAO), Oran, Algeria bDepartment of Mathematics, University of Tlemcen, Tlemcen, Algeria cDepartment of Mathematics and Informatics, National Polytechnic School of Oran, Oran, Algeria dDepartment of Mathematics, University of Oran 1, Oran, Algeria
Abstract:
The main subject of this paper is the study of a general
linear boundary-value problem with Drazin or right Drazin (respectively,
left Drazin) invertible operators corresponding to initial
boundary operators.
The obtained results are then employed to solve
a Schrödinger equation.
Keywords:
linear boundary-value problem, Drazin invertible operator,
right Drazin invertible operator, left Drazin invertible operator, initial boundary operator.
Citation:
N. Khaldi, M. Benharrat, B. Messirdi, “Linear Boundary-Value Problems Described
by Drazin Invertible Operators”, Math. Notes, 101:6 (2017), 994–999
\Bibitem{KhaBenMes17}
\by N.~Khaldi, M.~Benharrat, B.~Messirdi
\paper Linear Boundary-Value Problems Described
by Drazin Invertible Operators
\jour Math. Notes
\yr 2017
\vol 101
\issue 6
\pages 994--999
\mathnet{http://mi.mathnet.ru/mzm10907}
\crossref{https://doi.org/10.1134/S0001434617050261}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3669609}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000404236900026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021305952}
Linking options:
https://www.mathnet.ru/eng/mzm10907
This publication is cited in the following 3 articles:
K. Miloud, “Boundary value matrix problems and Drazin invertible operators”, Mat. Stud., 57:1 (2022), 16
S. Messirdi, S. Messirdi, S. Ayad-Djemai, B. Messirdi, “Left and right generalized drazin inverses for closed operators and application to singular linear equations”, Rocky Mt. J. Math., 51:1 (2021), 225–241
Mohammed Benharrat, Kouider Miloud Hocine, Bekkai Messirdi, “Left and right generalized Drazin invertible operators and local spectral theory”, Proyecciones (Antofagasta), 38:5 (2019), 897