Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 98, Issue 5, Pages 664–683
DOI: https://doi.org/10.4213/mzm10896
(Mi mzm10896)
 

This article is cited in 45 scientific papers (total in 45 papers)

On the Monge–Kantorovich Problem with Additional Linear Constraints

D. Zaev

National Research University "Higher School of Economics" (HSE), Moscow
References:
Abstract: The Monge–Kantorovich problem with the following additional constraint is considered: the admissible transportation plan must become zero on a fixed subspace of functions. Different subspaces give rise to different additional conditions on transportation plans. The main results are stated in general form and can be carried over to a number of important special cases. They are also valid for the Monge–Kantorovich problem whose solution is sought for the class of invariant or martingale measures. We formulate and prove a criterion for the existence of an optimal solution, a duality assertion of Kantorovich type, and a necessary geometric condition on the support of the optimal measure similar to the standard condition for $c$-monotonicity.
Keywords: Monge–Kantorovich problem, optimal transportation plan, Kantorovich duality.
Received: 17.06.2015
English version:
Mathematical Notes, 2015, Volume 98, Issue 5, Pages 725–741
DOI: https://doi.org/10.1134/S0001434615110036
Bibliographic databases:
Document Type: Article
UDC: 519.2+517.98
Language: Russian
Citation: D. Zaev, “On the Monge–Kantorovich Problem with Additional Linear Constraints”, Mat. Zametki, 98:5 (2015), 664–683; Math. Notes, 98:5 (2015), 725–741
Citation in format AMSBIB
\Bibitem{Zae15}
\by D.~Zaev
\paper On the Monge--Kantorovich Problem with Additional Linear Constraints
\jour Mat. Zametki
\yr 2015
\vol 98
\issue 5
\pages 664--683
\mathnet{http://mi.mathnet.ru/mzm10896}
\crossref{https://doi.org/10.4213/mzm10896}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438523}
\elib{https://elibrary.ru/item.asp?id=24850202}
\transl
\jour Math. Notes
\yr 2015
\vol 98
\issue 5
\pages 725--741
\crossref{https://doi.org/10.1134/S0001434615110036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000369701000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953234732}
Linking options:
  • https://www.mathnet.ru/eng/mzm10896
  • https://doi.org/10.4213/mzm10896
  • https://www.mathnet.ru/eng/mzm/v98/i5/p664
  • This publication is cited in the following 45 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:572
    Full-text PDF :199
    References:52
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024