Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 100, Issue 3, Pages 331–343
DOI: https://doi.org/10.4213/mzm10887
(Mi mzm10887)
 

Maxwell's Equations, the Euler Index, and Morse Theory

C. Valero

University of Guanajuato
References:
Abstract: We show that the singularities of the Fresnel surface for Maxwell's equation on an anisotrpic material can be accounted from purely topological considerations. The importance of these singularities is that they explain the phenomenon of conical refraction predicted by Hamilton. We show how to desingularise the Fresnel surface, which will allow us to use Morse theory to find lower bounds for the number of critical wave velocities inside the material under consideration. Finally, we propose a program to generalise the results obtained to the general case of hyperbolic differential operators on differentiable bundles.
Keywords: conical refraction, Fresnel surface, tensor, vector bundle, section, singularities.
Received: 19.09.2014
English version:
Mathematical Notes, 2016, Volume 100, Issue 3, Pages 352–362
DOI: https://doi.org/10.1134/S0001434616090029
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: C. Valero, “Maxwell's Equations, the Euler Index, and Morse Theory”, Mat. Zametki, 100:3 (2016), 331–343; Math. Notes, 100:3 (2016), 352–362
Citation in format AMSBIB
\Bibitem{Val16}
\by C.~Valero
\paper Maxwell's Equations, the Euler Index, and Morse Theory
\jour Mat. Zametki
\yr 2016
\vol 100
\issue 3
\pages 331--343
\mathnet{http://mi.mathnet.ru/mzm10887}
\crossref{https://doi.org/10.4213/mzm10887}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588853}
\elib{https://elibrary.ru/item.asp?id=26604143}
\transl
\jour Math. Notes
\yr 2016
\vol 100
\issue 3
\pages 352--362
\crossref{https://doi.org/10.1134/S0001434616090029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000386774200002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84992047023}
Linking options:
  • https://www.mathnet.ru/eng/mzm10887
  • https://doi.org/10.4213/mzm10887
  • https://www.mathnet.ru/eng/mzm/v100/i3/p331
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024