Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 99, Issue 3, Pages 366–375
DOI: https://doi.org/10.4213/mzm10875
(Mi mzm10875)
 

This article is cited in 4 scientific papers (total in 4 papers)

Besicovitch Cylindrical Transformation with a Hölder Function

A. V. Kochergin

Lomonosov Moscow State University
Full-text PDF (516 kB) Citations (4)
References:
Abstract: For any γ(0,1) and ε>0, we construct a cylindrical cascade with a γ-Hölder function over some rotation of the circle. This transformation has the Besicovitch property; i.e., it is topologically transitive and has discrete orbits. The Hausdorff dimension of the set of points of the circle that have discrete orbits is greater than 1γε.
Keywords: cylindrical transformation, Besicovitch property, Hölder property, Hausdorff dimension.
Received: 17.05.2015
English version:
Mathematical Notes, 2016, Volume 99, Issue 3, Pages 382–389
DOI: https://doi.org/10.1134/S0001434616030068
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. V. Kochergin, “Besicovitch Cylindrical Transformation with a Hölder Function”, Mat. Zametki, 99:3 (2016), 366–375; Math. Notes, 99:3 (2016), 382–389
Citation in format AMSBIB
\Bibitem{Koc16}
\by A.~V.~Kochergin
\paper Besicovitch Cylindrical Transformation with a~H\"older Function
\jour Mat. Zametki
\yr 2016
\vol 99
\issue 3
\pages 366--375
\mathnet{http://mi.mathnet.ru/mzm10875}
\crossref{https://doi.org/10.4213/mzm10875}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507399}
\elib{https://elibrary.ru/item.asp?id=25707680}
\transl
\jour Math. Notes
\yr 2016
\vol 99
\issue 3
\pages 382--389
\crossref{https://doi.org/10.1134/S0001434616030068}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376295200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84969819938}
Linking options:
  • https://www.mathnet.ru/eng/mzm10875
  • https://doi.org/10.4213/mzm10875
  • https://www.mathnet.ru/eng/mzm/v99/i3/p366
  • This publication is cited in the following 4 articles:
    1. Nikolay Moshchevitin, “On an example by Poincaré and sums with Kronecker sequence”, Monatsh Math, 2024  crossref
    2. A. V. Kochergin, “On the Growth of Birkhoff Sums over a Rotation of the Circle”, Math. Notes, 113:6 (2023), 784–793  mathnet  crossref  crossref  mathscinet
    3. A. V. Kochergin, “New examples of Besicovitch transitive cylindrical cascades”, Sb. Math., 209:9 (2018), 1257–1272  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    4. L. S. Efremova, “Dynamics of skew products of interval maps”, Russian Math. Surveys, 72:1 (2017), 101–178  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:359
    Full-text PDF :56
    References:97
    First page:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025