Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 99, Issue 4, Pages 564–573
DOI: https://doi.org/10.4213/mzm10862
(Mi mzm10862)
 

This article is cited in 15 scientific papers (total in 15 papers)

Independence Numbers of Random Subgraphs of Distance Graphs

M. M. Pyaderkin

Lomonosov Moscow State University
References:
Abstract: We consider the distance graph $G(n,r,s)$, whose vertices can be identified with $r$-element subsets of the set $\{1,2,\dots,n\}$, two arbitrary vertices being joined by an edge if and only if the cardinality of the intersection of the corresponding subsets is $s$. For $s=0$, such graphs are known as Kneser graphs. These graphs are closely related to the Erdős–Ko–Rado problem and also play an important role in combinatorial geometry and coding theory. We study some properties of random subgraphs of $G(n,r,s)$ in the Erdős–Rényi model, in which every edge occurs in the subgraph with some given probability $p$ independently of the other edges. We find the asymptotics of the independence number of a random subgraph of $G(n,r,s)$ for the case of constant $r$ and $s$. The independence number of a random subgraph is $\Theta(\log_2n)$ times as large as that of the graph $G(n,r,s)$ itself for $r \le 2s+1$, while for $r > 2s+1$ one has asymptotic stability: the two independence numbers asymptotically coincide.
Keywords: distance graph, random subgraph, independence number, Erdős–Ko–Rado problem, Erdős–Rényi model.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-03530
This work was supported by the Russian Foundation for Basic Research under grant 15-01-03530.
Received: 01.08.2015
English version:
Mathematical Notes, 2016, Volume 99, Issue 4, Pages 556–563
DOI: https://doi.org/10.1134/S0001434616030299
Bibliographic databases:
Document Type: Article
UDC: 519.179.4
MSC: 05C80
Language: Russian
Citation: M. M. Pyaderkin, “Independence Numbers of Random Subgraphs of Distance Graphs”, Mat. Zametki, 99:4 (2016), 564–573; Math. Notes, 99:4 (2016), 556–563
Citation in format AMSBIB
\Bibitem{Pya16}
\by M.~M.~Pyaderkin
\paper Independence Numbers of Random Subgraphs of Distance Graphs
\jour Mat. Zametki
\yr 2016
\vol 99
\issue 4
\pages 564--573
\mathnet{http://mi.mathnet.ru/mzm10862}
\crossref{https://doi.org/10.4213/mzm10862}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507421}
\elib{https://elibrary.ru/item.asp?id=25707704}
\transl
\jour Math. Notes
\yr 2016
\vol 99
\issue 4
\pages 556--563
\crossref{https://doi.org/10.1134/S0001434616030299}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376295200029}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84969752863}
Linking options:
  • https://www.mathnet.ru/eng/mzm10862
  • https://doi.org/10.4213/mzm10862
  • https://www.mathnet.ru/eng/mzm/v99/i4/p564
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:481
    Full-text PDF :100
    References:48
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024