Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 99, Issue 3, Pages 342–349
DOI: https://doi.org/10.4213/mzm10853
(Mi mzm10853)
 

This article is cited in 4 scientific papers (total in 4 papers)

When Does the Zero-One $k$-Law Fail?

M. E. Zhukovskiia, A. E. Medvedevab

a Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
b Tambov State University
Full-text PDF (481 kB) Citations (4)
References:
Abstract: The limit probabilities of the first-order properties of a random graph in the Erdős–Rényi model $G(n,n^{-\alpha})$, $\alpha\in(0,1)$, are studied. A random graph $G(n,n^{-\alpha})$ is said to obey the zero-one $k$-law if, given any property expressed by a formula of quantifier depth at most $k$, the probability of this property tends to either 0 or 1. As is known, for $\alpha=1-1/(2^{k-1}+a/b)$, where $a>2^{k-1}$, the zero-one $k$-law holds. Moreover, this law does not hold for $b=1$ and $a \le 2^{k-1}-2$. It is proved that the $k$-law also fails for $b>1$ and $a \le 2^{k-1}-(b+1)^2$.
Keywords: zero-one $k$-law, Erdős–Rényi random graph, first-order property.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00612
15-01-03530
Ministry of Education and Science of the Russian Federation МК-2184.2014.1
This work was supported by the Russian Science Foundation under grants 13-01-00612 and 15-01-03530 and by the program for the state support of young Russian scientists—candidates of sciences and doctors of science under grant MK-2184.2014.1.
Received: 08.07.2015
Revised: 16.10.2015
English version:
Mathematical Notes, 2016, Volume 99, Issue 3, Pages 362–367
DOI: https://doi.org/10.1134/S0001434616030032
Bibliographic databases:
Document Type: Article
UDC: 519
Language: Russian
Citation: M. E. Zhukovskii, A. E. Medvedeva, “When Does the Zero-One $k$-Law Fail?”, Mat. Zametki, 99:3 (2016), 342–349; Math. Notes, 99:3 (2016), 362–367
Citation in format AMSBIB
\Bibitem{ZhuMed16}
\by M.~E.~Zhukovskii, A.~E.~Medvedeva
\paper When Does the Zero-One $k$-Law Fail?
\jour Mat. Zametki
\yr 2016
\vol 99
\issue 3
\pages 342--349
\mathnet{http://mi.mathnet.ru/mzm10853}
\crossref{https://doi.org/10.4213/mzm10853}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507396}
\elib{https://elibrary.ru/item.asp?id=25707676}
\transl
\jour Math. Notes
\yr 2016
\vol 99
\issue 3
\pages 362--367
\crossref{https://doi.org/10.1134/S0001434616030032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376295200003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84969771815}
Linking options:
  • https://www.mathnet.ru/eng/mzm10853
  • https://doi.org/10.4213/mzm10853
  • https://www.mathnet.ru/eng/mzm/v99/i3/p342
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:558
    Full-text PDF :77
    References:106
    First page:67
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024