|
This article is cited in 1 scientific paper (total in 1 paper)
Positive Definiteness of a Family of Functions
V. P. Zastavnyi Donetsk National University
Abstract:
General necessary conditions on the real parameters $\alpha$, $\beta$, $C$, $D$ for the function $$ e^{-\alpha\rho(x)}(C\cos\beta\rho(x)+D\sin\beta\rho(x)), $$ where $\rho$ is the norm on $\mathbb R^n$, to be positive definite on $\mathbb R^n$, are obtained. For $\rho(x)=\|x\|_p$, a criterion on these parameters is obtained in the following cases: (i) $p=1$ or $p=2$; (ii) $3<p\le\infty$ and $n=2$.
Keywords:
positive definite function, Fourier transform, Bochner's theorem.
Received: 24.06.2015 Revised: 26.03.2016
Citation:
V. P. Zastavnyi, “Positive Definiteness of a Family of Functions”, Mat. Zametki, 101:2 (2017), 215–225; Math. Notes, 101:2 (2017), 250–259
Linking options:
https://www.mathnet.ru/eng/mzm10850https://doi.org/10.4213/mzm10850 https://www.mathnet.ru/eng/mzm/v101/i2/p215
|
Statistics & downloads: |
Abstract page: | 369 | Full-text PDF : | 86 | References: | 68 | First page: | 36 |
|