Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 98, Issue 3, Pages 372–377
DOI: https://doi.org/10.4213/mzm10814
(Mi mzm10814)
 

This article is cited in 2 scientific papers (total in 2 papers)

Residually Finite Algorithmically Finite Groups, Their Subgroups and Direct Products

A. A. Klyachko, A. K. Mongush

Lomonosov Moscow State University
Full-text PDF (429 kB) Citations (2)
References:
Abstract: We construct a finitely generated infinite recursively presented residually finite algorithmically finite group G, thus answering a question of Myasnikov and Osin. The group G here is “strongly infinite” and “strongly algorithmically finite”, which means that G contains an infinite Abelian normal subgroup and all finite Cartesian powers of G are algorithmically finite (i.e., for any n, there is no algorithm writing out infinitely many pairwise distinct elements of the group Gn). We also formulate several open questions concerning this topic.
Keywords: finitely generated group, residually finite group, algorithmically finite group.
Received: 15.03.2014
English version:
Mathematical Notes, 2015, Volume 98, Issue 3, Pages 414–418
DOI: https://doi.org/10.1134/S0001434615090060
Bibliographic databases:
Document Type: Article
UDC: 512.54.05+512.543.53+512.543.14+512.543.16+512.544.7+512.552
Language: Russian
Citation: A. A. Klyachko, A. K. Mongush, “Residually Finite Algorithmically Finite Groups, Their Subgroups and Direct Products”, Mat. Zametki, 98:3 (2015), 372–377; Math. Notes, 98:3 (2015), 414–418
Citation in format AMSBIB
\Bibitem{KlyMon15}
\by A.~A.~Klyachko, A.~K.~Mongush
\paper Residually Finite Algorithmically Finite Groups, Their Subgroups and Direct Products
\jour Mat. Zametki
\yr 2015
\vol 98
\issue 3
\pages 372--377
\mathnet{http://mi.mathnet.ru/mzm10814}
\crossref{https://doi.org/10.4213/mzm10814}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438493}
\elib{https://elibrary.ru/item.asp?id=24073747}
\transl
\jour Math. Notes
\yr 2015
\vol 98
\issue 3
\pages 414--418
\crossref{https://doi.org/10.1134/S0001434615090060}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000363520200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944882612}
Linking options:
  • https://www.mathnet.ru/eng/mzm10814
  • https://doi.org/10.4213/mzm10814
  • https://www.mathnet.ru/eng/mzm/v98/i3/p372
  • This publication is cited in the following 2 articles:
    1. A. Carnevale, M. Cavaleri, “Partial word and equality problems and Banach densities”, Adv. Math., 368 (2020), 107133  crossref  mathscinet  isi
    2. Alexei Miasnikov, Paul Schupp, “Computational complexity and the conjugacy problem”, Computability, 6:4 (2017), 307  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:470
    Full-text PDF :144
    References:47
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025