Loading [MathJax]/jax/output/SVG/config.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 99, Issue 3, Pages 395–403
DOI: https://doi.org/10.4213/mzm10764
(Mi mzm10764)
 

This article is cited in 9 scientific papers (total in 9 papers)

Multidimensional Watson Lemma and Its Applications

A. I. Rytova, E. B. Yarovaya

Lomonosov Moscow State University
Full-text PDF (478 kB) Citations (9)
References:
Abstract: We prove the multidimensional analog of the well-known Watson lemma and then apply it to prove a local limit theorem for the transition probabilities of symmetric random walks on the multidimensional lattice with infinite variance of jumps.
Keywords: multidimensional Watson lemma, symmetric random walk, infinite variance of jumps, multidimensional lattice, branching random walk.
Funding agency Grant number
Russian Science Foundation 14-21-00162
This study was carried out in Lomonosov Moscow State University and Steklov Mathematical Institute of Russian Academy of Sciences, and was supported by the Russian Science Foundation under grant 14-21-00162.
Received: 23.03.2015
Revised: 14.09.2015
English version:
Mathematical Notes, 2016, Volume 99, Issue 3, Pages 406–412
DOI: https://doi.org/10.1134/S0001434616030093
Bibliographic databases:
Document Type: Article
UDC: 517+519.21
PACS: 02.30.Mv, 02.50.Ey
Language: Russian
Citation: A. I. Rytova, E. B. Yarovaya, “Multidimensional Watson Lemma and Its Applications”, Mat. Zametki, 99:3 (2016), 395–403; Math. Notes, 99:3 (2016), 406–412
Citation in format AMSBIB
\Bibitem{RytYar16}
\by A.~I.~Rytova, E.~B.~Yarovaya
\paper Multidimensional Watson Lemma and Its Applications
\jour Mat. Zametki
\yr 2016
\vol 99
\issue 3
\pages 395--403
\mathnet{http://mi.mathnet.ru/mzm10764}
\crossref{https://doi.org/10.4213/mzm10764}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507402}
\elib{https://elibrary.ru/item.asp?id=25707683}
\transl
\jour Math. Notes
\yr 2016
\vol 99
\issue 3
\pages 406--412
\crossref{https://doi.org/10.1134/S0001434616030093}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376295200009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84969792665}
Linking options:
  • https://www.mathnet.ru/eng/mzm10764
  • https://doi.org/10.4213/mzm10764
  • https://www.mathnet.ru/eng/mzm/v99/i3/p395
  • This publication is cited in the following 9 articles:
    1. G. A. Popov, E. B. Yarovaya, “Aggregation of states of a branching random walk over multidimensional lattice”, Moscow University Mathematics Bulletin, 79:1 (2024), 60–70  mathnet  crossref  crossref  elib
    2. K. S. Ryadovkin, “On periodic branching random walks on $\mathbf{Z}^d$ with infinite variance of jumps”, Theory Probab. Appl., 69:1 (2024), 88–98  mathnet  crossref  crossref
    3. Rytova A., Yarovaya E., “Survival Analysis of Particle Populations in Branching Random Walks”, Commun. Stat.-Simul. Comput., 50:10 (2021), 3031–3045  crossref  mathscinet  isi  scopus
    4. A. Rytova, E. Yarovaya, “Heavy-tailed branching random walks on multidimensional lattices. A moment approach”, Proc. R. Soc. Edinb. Sect. A-Math., 151:3 (2021), PII S0308210520000463, 971–992  crossref  mathscinet  isi
    5. D. M. Balashova, “Branching random walks with alternating sign intensities of branching sources”, J. Math. Sci., 262:4 (2022), 442–451  mathnet  crossref
    6. A. I. Rytova, “Harmonic analysis of random walks with heavy tails”, J. Math. Sci., 262:4 (2022), 514–524  mathnet  crossref
    7. A. I. Rytova, E. B. Yarovaya, “Moments of the numbers of particles in a heavy-tailed branching random walk”, Russian Math. Surveys, 74:6 (2019), 1126–1128  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. E. Yarovaya, “Operator equations of branching random walks”, Methodol. Comput. Appl. Probab., 21:3, SI (2019), 1007–1021  crossref  mathscinet  isi
    9. “International conference on stochastic methods (Abstracts)”, Theory Probab. Appl., 62:4 (2018), 640–674  mathnet  crossref  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:561
    Full-text PDF :177
    References:95
    First page:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025