Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2018, Volume 103, Issue 3, Pages 372–391
DOI: https://doi.org/10.4213/mzm10758
(Mi mzm10758)
 

Certain Partial Conservativeness Properties of Intuitionistic Set Theory with the Principle of Double Complement of Sets

A. Vladimirov

Lomonosov Moscow State University
References:
Abstract: The Zermelo–Fraenkel set theory with the underlying intuitionistic logic (for brevity, we refer to it as the intuitionistic Zermelo–Fraenkel set theory) in a two-sorted language (where the sort $0$ is assigned to numbers and the sort $1$, to sets) with the collection scheme used as the replacement scheme of axioms (the $ZFI2C$ theory) is considered. Some partial conservativeness properties of the intuitionistic Zermelo–Fraenkel set theory with the principle of double complement of sets ($DCS$) with respect to a certain class of arithmetic formulas (the class all so-called AEN formulas) are proved. Namely, let $T$ be one of the theories $ZFI2C$ and $ZFI2C + DCS$. Then
  • 1) the theory $T+ECT$ is conservative over $T$ with respect to the class of AEN formulas;
  • 2) the theory $T+ECT+M$ is conservative over $T+M^-$ with respect to the class of AEN formulas.
Here $ECT$ stands for the extended Church's thesis, $M$ is the strong Markov principle, and $M^-$ is the weak Markov principle. The following partial conservativeness properties are also proved:
  • 3) $T+ECT+M$ is conservative over $T$ with respect to the class of negative arithmetic formulas;
  • 4) the classical theory $ZF2$ is conservative over $ZFI2C$ with respect to the class of negative arithmetic formulas.
Keywords: intuitionistic logic, Zermelo–Fraenkel axioms for set theory, intuitionistic Zermelo–Fraenkel set theory, recursive realizability, partial conservativeness properties.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00615
This work was supported by the Russian Foundation for Basic Research under grant 16-01-00615.
Received: 30.08.2016
Revised: 13.01.2017
English version:
Mathematical Notes, 2018, Volume 103, Issue 3, Pages 378–394
DOI: https://doi.org/10.1134/S0001434618030057
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: A. Vladimirov, “Certain Partial Conservativeness Properties of Intuitionistic Set Theory with the Principle of Double Complement of Sets”, Mat. Zametki, 103:3 (2018), 372–391; Math. Notes, 103:3 (2018), 378–394
Citation in format AMSBIB
\Bibitem{Vla18}
\by A.~Vladimirov
\paper Certain Partial Conservativeness Properties of Intuitionistic Set Theory with the Principle of Double Complement of Sets
\jour Mat. Zametki
\yr 2018
\vol 103
\issue 3
\pages 372--391
\mathnet{http://mi.mathnet.ru/mzm10758}
\crossref{https://doi.org/10.4213/mzm10758}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3769203}
\elib{https://elibrary.ru/item.asp?id=32641321}
\transl
\jour Math. Notes
\yr 2018
\vol 103
\issue 3
\pages 378--394
\crossref{https://doi.org/10.1134/S0001434618030057}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000430553100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046345155}
Linking options:
  • https://www.mathnet.ru/eng/mzm10758
  • https://doi.org/10.4213/mzm10758
  • https://www.mathnet.ru/eng/mzm/v103/i3/p372
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:267
    Full-text PDF :35
    References:35
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024