Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 99, Issue 6, Pages 855–866
DOI: https://doi.org/10.4213/mzm10754
(Mi mzm10754)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the Boundedness of Generalized Solutions of Higher-Order Nonlinear Elliptic Equations with Data from an Orlicz–Zygmund Class

M. V. Voitovichabc

a Institute of Mathematics, Ukrainian National Academy of Sciences
b Mariupol State University
c Donetsk National University
Full-text PDF (568 kB) Citations (3)
References:
Abstract: In the present paper, a $2m$th-order quasilinear divergence equation is considered under the condition that its coefficients satisfy the Carathéodory condition and the standard conditions of growth and coercivity in the Sobolev space $W^{m,p}(\Omega)$, $\Omega\subset \mathbb{R}^{n}$, $p>1$. It is proved that an arbitrary generalized (in the sense of distributions) solution $u\in W^{m,p}_{0}(\Omega)$ of this equation is bounded if $m\ge2$, $n=mp$, and the right-hand side of this equation belongs to the Orlicz–Zygmund space $L(\log L)^{n-1}(\Omega)$.
Keywords: quasilinear divergence equation, generalized solution, Sobolev space, Orlicz–Zygmund space.
Funding agency Grant number
Кафедра математического анализа и дифференциальных уравнений факультета математики и информационных технологий ДонНУ 15-1вв\19
This work was supported by the Chair of Mathematical Analysis and Differential Equations, Department of Mathematics and Information Technologies, at Donetsk National University, Vinnitsa, Ukraine (grant no. 15-1cc\19 "Metric spaces, harmonic analysis of functions and operators, singular and nonclassical problems for differential equations").
Received: 25.04.2015
Revised: 15.12.2015
English version:
Mathematical Notes, 2016, Volume 99, Issue 6, Pages 840–850
DOI: https://doi.org/10.1134/S0001434616050229
Bibliographic databases:
Document Type: Article
UDC: 517.956.25
PACS: 02.30.Jr
Language: Russian
Citation: M. V. Voitovich, “On the Boundedness of Generalized Solutions of Higher-Order Nonlinear Elliptic Equations with Data from an Orlicz–Zygmund Class”, Mat. Zametki, 99:6 (2016), 855–866; Math. Notes, 99:6 (2016), 840–850
Citation in format AMSBIB
\Bibitem{Voi16}
\by M.~V.~Voitovich
\paper On the Boundedness of Generalized Solutions of Higher-Order Nonlinear Elliptic Equations with Data from an Orlicz--Zygmund Class
\jour Mat. Zametki
\yr 2016
\vol 99
\issue 6
\pages 855--866
\mathnet{http://mi.mathnet.ru/mzm10754}
\crossref{https://doi.org/10.4213/mzm10754}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507450}
\elib{https://elibrary.ru/item.asp?id=26414309}
\transl
\jour Math. Notes
\yr 2016
\vol 99
\issue 6
\pages 840--850
\crossref{https://doi.org/10.1134/S0001434616050229}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000382176900022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84977111491}
Linking options:
  • https://www.mathnet.ru/eng/mzm10754
  • https://doi.org/10.4213/mzm10754
  • https://www.mathnet.ru/eng/mzm/v99/i6/p855
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:441
    Full-text PDF :49
    References:81
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024