Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 99, Issue 1, Pages 35–41
DOI: https://doi.org/10.4213/mzm10689
(Mi mzm10689)
 

This article is cited in 2 scientific papers (total in 2 papers)

Determination of the Jump of a Function of Generalized Bounded Variation from the Derivatives of the Partial Sums of Its Fourier Series

A. A. Kelzon

Admiral Makarov State University of Maritime and Inland Shipping
Full-text PDF (437 kB) Citations (2)
References:
Abstract: It is established that the formulas determining the jump of a periodic function from the derivatives of the partial sums of its Fourier series and valid for functions of harmonic bounded variation (the HBV class) possibly will not hold for functions of $\Phi$-bounded variation (in the sense of Schramm) if this class is wider than the HBV class.
Keywords: jump of a periodic function, function of harmonic bounded variation, function of $\Phi$-bounded variation, partial sum, Fourier series.
Received: 16.02.2015
Revised: 20.06.2015
English version:
Mathematical Notes, 2016, Volume 99, Issue 1, Pages 46–51
DOI: https://doi.org/10.1134/S0001434616010053
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: A. A. Kelzon, “Determination of the Jump of a Function of Generalized Bounded Variation from the Derivatives of the Partial Sums of Its Fourier Series”, Mat. Zametki, 99:1 (2016), 35–41; Math. Notes, 99:1 (2016), 46–51
Citation in format AMSBIB
\Bibitem{Kel16}
\by A.~A.~Kelzon
\paper Determination of the Jump of a Function of Generalized Bounded Variation from the Derivatives of the Partial Sums of Its Fourier Series
\jour Mat. Zametki
\yr 2016
\vol 99
\issue 1
\pages 35--41
\mathnet{http://mi.mathnet.ru/mzm10689}
\crossref{https://doi.org/10.4213/mzm10689}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3462686}
\elib{https://elibrary.ru/item.asp?id=25707639}
\transl
\jour Math. Notes
\yr 2016
\vol 99
\issue 1
\pages 46--51
\crossref{https://doi.org/10.1134/S0001434616010053}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373228900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962439471}
Linking options:
  • https://www.mathnet.ru/eng/mzm10689
  • https://doi.org/10.4213/mzm10689
  • https://www.mathnet.ru/eng/mzm/v99/i1/p35
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:420
    Full-text PDF :150
    References:82
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024