|
This article is cited in 2 scientific papers (total in 2 papers)
Torsion-Free Modules with $\mathrm{UA}$-Rings of Endomorphisms
O. V. Ljubimtseva, D. S. Chistyakovb a Nizhny Novgorod State University of Architecture and Civil Engineering
b Lobachevski State University of Nizhni Novgorod
Abstract:
An associative ring $R$ is called a unique addition ring ($\mathrm{UA}$-ring) if its multiplicative semigroup $(R,\,\cdot\,)$ can be equipped with a unique binary operation $+$ transforming the triple $(R,\,\cdot\,,+)$ to a ring. An $R$-module $A$ is said to be an $\mathrm{End}$-$\mathrm{UA}$-module if the endomorphism ring $\mathrm{End}_R(A)$ of $A$ is a $\mathrm{UA}$-ring. In the paper, the torsion-free $\mathrm{End}$-$\mathrm{UA}$-modules over commutative Dedekind domains are studied. In some classes of Abelian torsion-free groups, the Abelian groups having $\mathrm{UA}$-endomorphism rings are found.
Keywords:
Abelian torsion-free group, $\mathrm{UA}$-ring, $\mathrm{End}$-$\mathrm{UA}$-module, $\mathrm{UA}$-endomorphism ring.
Received: 16.03.2015
Citation:
O. V. Ljubimtsev, D. S. Chistyakov, “Torsion-Free Modules with $\mathrm{UA}$-Rings of Endomorphisms”, Mat. Zametki, 98:6 (2015), 898–906; Math. Notes, 98:6 (2015), 949–956
Linking options:
https://www.mathnet.ru/eng/mzm10683https://doi.org/10.4213/mzm10683 https://www.mathnet.ru/eng/mzm/v98/i6/p898
|
Statistics & downloads: |
Abstract page: | 276 | Full-text PDF : | 145 | References: | 38 | First page: | 31 |
|