Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 98, Issue 6, Pages 898–906
DOI: https://doi.org/10.4213/mzm10683
(Mi mzm10683)
 

This article is cited in 2 scientific papers (total in 2 papers)

Torsion-Free Modules with $\mathrm{UA}$-Rings of Endomorphisms

O. V. Ljubimtseva, D. S. Chistyakovb

a Nizhny Novgorod State University of Architecture and Civil Engineering
b Lobachevski State University of Nizhni Novgorod
Full-text PDF (479 kB) Citations (2)
References:
Abstract: An associative ring $R$ is called a unique addition ring ($\mathrm{UA}$-ring) if its multiplicative semigroup $(R,\,\cdot\,)$ can be equipped with a unique binary operation $+$ transforming the triple $(R,\,\cdot\,,+)$ to a ring. An $R$-module $A$ is said to be an $\mathrm{End}$-$\mathrm{UA}$-module if the endomorphism ring $\mathrm{End}_R(A)$ of $A$ is a $\mathrm{UA}$-ring. In the paper, the torsion-free $\mathrm{End}$-$\mathrm{UA}$-modules over commutative Dedekind domains are studied. In some classes of Abelian torsion-free groups, the Abelian groups having $\mathrm{UA}$-endomorphism rings are found.
Keywords: Abelian torsion-free group, $\mathrm{UA}$-ring, $\mathrm{End}$-$\mathrm{UA}$-module, $\mathrm{UA}$-endomorphism ring.
Received: 16.03.2015
English version:
Mathematical Notes, 2015, Volume 98, Issue 6, Pages 949–956
DOI: https://doi.org/10.1134/S0001434615110279
Bibliographic databases:
Document Type: Article
UDC: 512.541
Language: Russian
Citation: O. V. Ljubimtsev, D. S. Chistyakov, “Torsion-Free Modules with $\mathrm{UA}$-Rings of Endomorphisms”, Mat. Zametki, 98:6 (2015), 898–906; Math. Notes, 98:6 (2015), 949–956
Citation in format AMSBIB
\Bibitem{LjuChi15}
\by O.~V.~Ljubimtsev, D.~S.~Chistyakov
\paper Torsion-Free Modules with $\mathrm{UA}$-Rings of Endomorphisms
\jour Mat. Zametki
\yr 2015
\vol 98
\issue 6
\pages 898--906
\mathnet{http://mi.mathnet.ru/mzm10683}
\crossref{https://doi.org/10.4213/mzm10683}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438545}
\elib{https://elibrary.ru/item.asp?id=24850265}
\transl
\jour Math. Notes
\yr 2015
\vol 98
\issue 6
\pages 949--956
\crossref{https://doi.org/10.1134/S0001434615110279}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000369701000027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953341646}
Linking options:
  • https://www.mathnet.ru/eng/mzm10683
  • https://doi.org/10.4213/mzm10683
  • https://www.mathnet.ru/eng/mzm/v98/i6/p898
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:276
    Full-text PDF :145
    References:38
    First page:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024