Processing math: 100%
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 97, Issue 5, Pages 781–793
DOI: https://doi.org/10.4213/mzm10655
(Mi mzm10655)
 

This article is cited in 3 scientific papers (total in 3 papers)

Trigonometric Sums over One-Dimensional Quasilattices of Arbitrary Codimension

A. V. Shutov

Vladimir State University
Full-text PDF (518 kB) Citations (3)
References:
Abstract: A new class of one-dimensional quasilattices parametrized by the translations of the torus is introduced. For this class, parameter-dependent trigonometric sums over points of quasilattice are considered. Nontrivial estimates of the trigonometric sums under consideration are obtained. For a number of trigonometric sums of special form, asymptotic formulas are derived. It is proved that the distribution of points of quasilattices is uniform modulo h for almost all h. Earlier similar results were obtained in the particular case of quasilattices parametrized by the rotations of the circle.
Keywords: trigonometric sum, quasilattice, codimension, bounded remainder set, tiling of the torus, Weyl's uniform distribution theorem, averaged lattice value, Koksma–Hlawka inequality, orbit structure.
Funding agency Grant number
Russian Science Foundation 14-11-00433
This work was supported by the Russian Science Foundation (grant no. 14-11-00433).
Received: 31.07.2014
English version:
Mathematical Notes, 2015, Volume 97, Issue 5, Pages 791–802
DOI: https://doi.org/10.1134/S0001434615050144
Bibliographic databases:
Document Type: Article
UDC: 511.3
Language: Russian
Citation: A. V. Shutov, “Trigonometric Sums over One-Dimensional Quasilattices of Arbitrary Codimension”, Mat. Zametki, 97:5 (2015), 781–793; Math. Notes, 97:5 (2015), 791–802
Citation in format AMSBIB
\Bibitem{Shu15}
\by A.~V.~Shutov
\paper Trigonometric Sums over One-Dimensional Quasilattices of Arbitrary Codimension
\jour Mat. Zametki
\yr 2015
\vol 97
\issue 5
\pages 781--793
\mathnet{http://mi.mathnet.ru/mzm10655}
\crossref{https://doi.org/10.4213/mzm10655}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3370561}
\elib{https://elibrary.ru/item.asp?id=23421564}
\transl
\jour Math. Notes
\yr 2015
\vol 97
\issue 5
\pages 791--802
\crossref{https://doi.org/10.1134/S0001434615050144}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000357050200014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84933499344}
Linking options:
  • https://www.mathnet.ru/eng/mzm10655
  • https://doi.org/10.4213/mzm10655
  • https://www.mathnet.ru/eng/mzm/v97/i5/p781
  • This publication is cited in the following 3 articles:
    1. A. V. Shutov, “O chislakh s zadannymi poslednimi tsiframi razlozheniya po lineinoi rekurrentnoi posledovatelnosti”, Dalnevost. matem. zhurn., 24:1 (2024), 141–150  mathnet  crossref
    2. A. V. Shutov, “Podstanovki i mnozhestva ogranichennogo ostatka”, Chebyshevskii sb., 19:2 (2018), 501–522  mathnet  crossref  mathscinet  elib
    3. A. V. Shutov, “Trigonometric Integrals over One-Dimensional Quasilattices of Arbitrary Codimension”, Math. Notes, 99:4 (2016), 590–597  mathnet  crossref  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:339
    Full-text PDF :61
    References:40
    First page:17
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025