|
This article is cited in 1 scientific paper (total in 1 paper)
On the Computation of Eigenfunctions and Eigenvalues in the Sturm–Liouville Problem
M. M. Khapaev, T. M. Khapaeva M. V. Lomonosov Moscow State University
Abstract:
We present the variational method for finding the eigenfunctions and eigenvalues in the Sturm–Liouville problem with Dirichlet boundary conditions; the method is based on the proposed functional. As a test example, we consider the potential $\cos(4x)$. Also computations for two functions $\sin((x-\pi)^2/\pi)$ and a high nonisosceles triangle are given.
Keywords:
variational method, functional, Sturm–Liouville problem, eigenfunction, eigenvalue, Dirichlet boundary condition, the function $\sin((x-\pi)^2/\pi)$, the function $\cos(4x)$, nonisosceles triangle, random search method, Wolfram Research, “Nminimize” procedure, algorithm.
Received: 10.09.2013
Citation:
M. M. Khapaev, T. M. Khapaeva, “On the Computation of Eigenfunctions and Eigenvalues in the Sturm–Liouville Problem”, Mat. Zametki, 97:4 (2015), 604–608; Math. Notes, 97:4 (2015), 616–620
Linking options:
https://www.mathnet.ru/eng/mzm10642https://doi.org/10.4213/mzm10642 https://www.mathnet.ru/eng/mzm/v97/i4/p604
|
Statistics & downloads: |
Abstract page: | 375 | Full-text PDF : | 130 | References: | 70 | First page: | 53 |
|