Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 98, Issue 3, Pages 337–348
DOI: https://doi.org/10.4213/mzm10638
(Mi mzm10638)
 

This article is cited in 18 scientific papers (total in 18 papers)

Concerning the Theory of $\tau$-Measurable Operators Affiliated to a Semifinite von Neumann Algebra

A. M. Bikchentaev

Kazan (Volga Region) Federal University
References:
Abstract: Let $\mathscr M$ be a von Neumann algebra of operators in a Hilbert space $\mathscr H$, let $\tau$ be an exact normal semifinite trace on $\mathscr M$, and let $L_1(\mathscr M,\tau)$ be the Banach space of $\tau$-integrable operators. The following results are obtained.
If $X=X^*$, $Y=Y^*$ are $\tau$-measurable operators and $XY\in L_1(\mathscr M,\tau)$, then $YX\in L_1(\mathscr M,\tau)$ and $\tau(XY)=\tau(YX)\in\mathbb R$. In particular, if $X,Y\in\mathscr B(\mathscr H)^{\mathrm{sa}}$ and $XY\in\mathfrak S_1$, then $YX\in \mathfrak S_1$ and $\operatorname{tr}(XY) =\operatorname{tr}(YX)\in\mathbb R$. If $X\in L_1(\mathscr M,\tau)$, then $\tau(X^*)=\overline{\tau(X)}$.
Let $A$ be a $\tau$-measurable operator. If the operator $A$ is $\tau$-compact and $V\in\mathscr M$ is a contraction, then it follows from $V^*AV=A$ that $VA=AV$. We have $A=A^2$ if and only if $A=|A^*||A|$. This representation is also new for bounded idempotents in $\mathscr H$. If $A=A^2\in L_1(\mathscr M,\tau)$, then $\tau(A)=\tau(\sqrt{|A|}\mspace{2mu}|A^*|\sqrt{|A|}\mspace{2mu}) \in\mathbb R^+$. If $A=A^2$ and $A$ (or $A^*$) is semihyponormal, then $A$ is normal, thus $A$ is a projection. If $A=A^3$ and $A$ is hyponormal or cohyponormal, then $A$ is normal, and thus $A=A^*\in\mathscr M$ is the difference of two mutually orthogonal projections $(A+A^2)/2$ and $(A^2-A)/2$. If $A,A^2\in L_1(\mathscr M,\tau)$ and $A=A^3$, then $\tau(A)\in\mathbb R$.
Keywords: von Neumann algebra, $\tau$-measurable operator, $\tau$-compact operator, Banach space of $\tau$-integrable operators, Hilbert space, idempotent, hyponormal operator, semihyponormal operator, cohyponormal operator.
Received: 24.11.2014
English version:
Mathematical Notes, 2015, Volume 98, Issue 3, Pages 382–391
DOI: https://doi.org/10.1134/S0001434615090035
Bibliographic databases:
Document Type: Article
UDC: 517.983+517.986
Language: Russian
Citation: A. M. Bikchentaev, “Concerning the Theory of $\tau$-Measurable Operators Affiliated to a Semifinite von Neumann Algebra”, Mat. Zametki, 98:3 (2015), 337–348; Math. Notes, 98:3 (2015), 382–391
Citation in format AMSBIB
\Bibitem{Bik15}
\by A.~M.~Bikchentaev
\paper Concerning the Theory of $\tau$-Measurable Operators Affiliated to a Semifinite von~Neumann Algebra
\jour Mat. Zametki
\yr 2015
\vol 98
\issue 3
\pages 337--348
\mathnet{http://mi.mathnet.ru/mzm10638}
\crossref{https://doi.org/10.4213/mzm10638}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438490}
\elib{https://elibrary.ru/item.asp?id=24073744}
\transl
\jour Math. Notes
\yr 2015
\vol 98
\issue 3
\pages 382--391
\crossref{https://doi.org/10.1134/S0001434615090035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000363520200003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944882598}
Linking options:
  • https://www.mathnet.ru/eng/mzm10638
  • https://doi.org/10.4213/mzm10638
  • https://www.mathnet.ru/eng/mzm/v98/i3/p337
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024