Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2017, Volume 101, Issue 5, Pages 690–699
DOI: https://doi.org/10.4213/mzm10632
(Mi mzm10632)
 

This article is cited in 2 scientific papers (total in 2 papers)

Lie Algebras with Abelian Centralizers

V. V. Gorbatsevich

Moscow Aviation Institute (National Research University)
Full-text PDF (426 kB) Citations (2)
References:
Abstract: In the paper, finite-dimensional real Lie algebras for which the centralizers of all nonzero element are Abelian are studied. These Lie algebras are also characterized by the transitivity condition for the commutation relation for two nonzero elements. A complete description of these Lie algebras up to isomorphism is given. Some results concerning the relationship between the aforementioned Lie algebras and the Lie algebras of vector fields whose orbits are one-dimensional are considered.
Keywords: Lie algebra, centralizer, CT Lie algebra, Lie algebra of vector fields.
Received: 28.11.2014
Revised: 23.09.2016
English version:
Mathematical Notes, 2017, Volume 101, Issue 5, Pages 795–801
DOI: https://doi.org/10.1134/S0001434617050054
Bibliographic databases:
Document Type: Article
UDC: 512.816.3
Language: Russian
Citation: V. V. Gorbatsevich, “Lie Algebras with Abelian Centralizers”, Mat. Zametki, 101:5 (2017), 690–699; Math. Notes, 101:5 (2017), 795–801
Citation in format AMSBIB
\Bibitem{Gor17}
\by V.~V.~Gorbatsevich
\paper Lie Algebras with Abelian Centralizers
\jour Mat. Zametki
\yr 2017
\vol 101
\issue 5
\pages 690--699
\mathnet{http://mi.mathnet.ru/mzm10632}
\crossref{https://doi.org/10.4213/mzm10632}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3646475}
\elib{https://elibrary.ru/item.asp?id=29106611}
\transl
\jour Math. Notes
\yr 2017
\vol 101
\issue 5
\pages 795--801
\crossref{https://doi.org/10.1134/S0001434617050054}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000404236900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85021293226}
Linking options:
  • https://www.mathnet.ru/eng/mzm10632
  • https://doi.org/10.4213/mzm10632
  • https://www.mathnet.ru/eng/mzm/v101/i5/p690
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:339
    Full-text PDF :48
    References:59
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024