Abstract:
We study the behavior of the set of time-periodic solutions of the three-dimensional system of Navier–Stokes equations in a bounded domain as the frequency of the oscillations of the right-hand side tends to infinity. It is established that the set of periodic solutions tends to the solution set of the homogenized stationary equation.
Keywords:
system of Navier–Stokes equations, homogenization principle, Hilbert space, periodic solution, strong solution.
Citation:
V. L. Khatskevich, “On the Homogenization Principle in a Time-Periodic Problem for the Navier–Stokes Equations with Rapidly Oscillating Mass Force”, Mat. Zametki, 99:5 (2016), 764–777; Math. Notes, 99:5 (2016), 757–768
\Bibitem{Kha16}
\by V.~L.~Khatskevich
\paper On the Homogenization Principle in a Time-Periodic Problem for the Navier--Stokes Equations with Rapidly Oscillating Mass Force
\jour Mat. Zametki
\yr 2016
\vol 99
\issue 5
\pages 764--777
\mathnet{http://mi.mathnet.ru/mzm10624}
\crossref{https://doi.org/10.4213/mzm10624}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507441}
\elib{https://elibrary.ru/item.asp?id=25865460}
\transl
\jour Math. Notes
\yr 2016
\vol 99
\issue 5
\pages 757--768
\crossref{https://doi.org/10.1134/S0001434616050138}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000382176900013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84977120647}
Linking options:
https://www.mathnet.ru/eng/mzm10624
https://doi.org/10.4213/mzm10624
https://www.mathnet.ru/eng/mzm/v99/i5/p764
This publication is cited in the following 10 articles:
V. L. Khatskevich, “On Conditions that Ensure Hydrodynamic Stability and Uniqueness of Stationary and Periodic Liquid Flows”, J Math Sci, 2025
V. B. Levenshtam, “Usrednenie vysokochastotnoi normalnoi sistemy ODU s mnogotochechnymi kraevymi usloviyami na poluosi”, Izv. vuzov. Matem., 2024, no. 3, 64–69
V. B. Levenshtam, “Averaging of a Normal System of Ordinary Differential Equations of High Frequency with a Multipoint Boundary Value Problem on a Semiaxis”, Russ Math., 68:3 (2024), 53
V. B. Levenshtam, “Usrednenie abstraktnykh parabolicheskikh uravnenii s mnogotochechnymi integralnymi kraevymi usloviyami”, Vladikavk. matem. zhurn., 26:4 (2024), 95–104
V. B. Levenshtam, “Metod usredneniya dlya kvazilineinoi giperbolicheskoi sistemy. Asimptotika reshenii”, Tr. MMO, 84, no. 1, MTsNMO, M., 2023, 25–35
V.B. Levenshtam, “Averaging Method for Quasi-Linear Hyperbolic Systems”, Russ. J. Math. Phys., 30:4 (2023), 552
Peng Gao, “Averaging principle for multiscale nonautonomous random 2D Navier-Stokes system”, Journal of Functional Analysis, 285:6 (2023), 110036
V. L. Khatskevich, “Ob uslovii, obespechivayuschem gidrodinamicheskuyu ustoichivost i edinstvennost statsionarnogo i periodicheskogo techenii zhidkosti”, Materialy Voronezhskoi vesennei matematicheskoi shkoly
«Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXX». Voronezh, 3–9 maya 2019 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 190, VINITI RAN, M., 2021, 122–129
P. Gao, “Averaging principles for the swift-hohenberg equation”, Commun. Pure Appl. Anal, 19:1 (2020), 293–310
V. L. Khatskevich, “Asymptotics of motions of viscous incompressible fluids with large viscosity”, Journal of Mathematical Sciences, 227:4 (2017), 520–530