Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 98, Issue 5, Pages 643–650
DOI: https://doi.org/10.4213/mzm10612
(Mi mzm10612)
 

This article is cited in 1 scientific paper (total in 1 paper)

Quantitative Expressions for the Connectedness of Sets in ${\mathbb R}^n$

P. A. Borodin, O. N. Kosukhin

Lomonosov Moscow State University
Full-text PDF (433 kB) Citations (1)
References:
Abstract: We prove that, for two arbitrary points $a$ and $b$ of a connected set $E\subset\nobreak {\mathbb R}^n$ ($n\ge 2$) and for any $\varepsilon>0$, there exist points $x_0=a$, $x_2,\dots,x_p=b$ in $E$ such that
$$ \|x_1-x_0\|^n+\dots+\|x_p-x_{p-1}\|^n<\varepsilon. $$
We prove that the exponent $n$ in this assertion is sharp. The nonexistence of a chain of points in $E$ with
$$ \|x_1-x_0\|^\alpha+\dots+\|x_p-x_{p-1}\|^\alpha<\varepsilon $$
for some $\alpha\in (1,n)$ proves to be equivalent to the existence of a nonconstant function $f\colon E\to {\mathbb R}$ in the class $\operatorname{Lip}_\alpha(E)$. For each such $\alpha$, we construct a curve $E(\alpha)$ of Hausdorff dimension $\alpha$ in ${\mathbb R}^n$ and a nonconstant function $f\colon E(\alpha)\to {\mathbb R}$ such that $f\in\operatorname{Lip}_\alpha(E(\alpha))$.
Keywords: connectedness, Hausdorff dimension, Lipschitz property, Euclidean space.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00510
14-01-91158
15-01-08335
15-01-08335
Ministry of Education and Science of the Russian Federation НШ-3682.2014.1
Dynasty Foundation
Received: 30.10.2014
Revised: 25.03.2015
English version:
Mathematical Notes, 2015, Volume 98, Issue 5, Pages 707–713
DOI: https://doi.org/10.1134/S0001434615110012
Bibliographic databases:
Document Type: Article
UDC: 515.125+517.518.26
Language: Russian
Citation: P. A. Borodin, O. N. Kosukhin, “Quantitative Expressions for the Connectedness of Sets in ${\mathbb R}^n$”, Mat. Zametki, 98:5 (2015), 643–650; Math. Notes, 98:5 (2015), 707–713
Citation in format AMSBIB
\Bibitem{BorKos15}
\by P.~A.~Borodin, O.~N.~Kosukhin
\paper Quantitative Expressions for the Connectedness of Sets in~${\mathbb R}^n$
\jour Mat. Zametki
\yr 2015
\vol 98
\issue 5
\pages 643--650
\mathnet{http://mi.mathnet.ru/mzm10612}
\crossref{https://doi.org/10.4213/mzm10612}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438521}
\elib{https://elibrary.ru/item.asp?id=24850189}
\transl
\jour Math. Notes
\yr 2015
\vol 98
\issue 5
\pages 707--713
\crossref{https://doi.org/10.1134/S0001434615110012}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000369701000001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953236028}
Linking options:
  • https://www.mathnet.ru/eng/mzm10612
  • https://doi.org/10.4213/mzm10612
  • https://www.mathnet.ru/eng/mzm/v98/i5/p643
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:545
    Full-text PDF :194
    References:51
    First page:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024