|
This article is cited in 1 scientific paper (total in 1 paper)
Quantitative Expressions for the Connectedness of Sets in ${\mathbb R}^n$
P. A. Borodin, O. N. Kosukhin Lomonosov Moscow State University
Abstract:
We prove that, for two arbitrary points $a$ and $b$ of a connected set $E\subset\nobreak {\mathbb R}^n$ ($n\ge 2$) and for any $\varepsilon>0$, there exist points $x_0=a$, $x_2,\dots,x_p=b$ in $E$ such that $$ \|x_1-x_0\|^n+\dots+\|x_p-x_{p-1}\|^n<\varepsilon. $$ We prove that the exponent $n$ in this assertion is sharp. The nonexistence of a chain of points in $E$ with
$$
\|x_1-x_0\|^\alpha+\dots+\|x_p-x_{p-1}\|^\alpha<\varepsilon
$$
for some $\alpha\in (1,n)$ proves to be equivalent to the existence of a nonconstant function $f\colon E\to {\mathbb R}$ in the class $\operatorname{Lip}_\alpha(E)$. For each such $\alpha$, we construct a curve $E(\alpha)$ of Hausdorff dimension $\alpha$ in ${\mathbb R}^n$ and a nonconstant function $f\colon E(\alpha)\to {\mathbb R}$ such that $f\in\operatorname{Lip}_\alpha(E(\alpha))$.
Keywords:
connectedness, Hausdorff dimension, Lipschitz property, Euclidean space.
Received: 30.10.2014 Revised: 25.03.2015
Citation:
P. A. Borodin, O. N. Kosukhin, “Quantitative Expressions for the Connectedness of Sets in ${\mathbb R}^n$”, Mat. Zametki, 98:5 (2015), 643–650; Math. Notes, 98:5 (2015), 707–713
Linking options:
https://www.mathnet.ru/eng/mzm10612https://doi.org/10.4213/mzm10612 https://www.mathnet.ru/eng/mzm/v98/i5/p643
|
Statistics & downloads: |
Abstract page: | 545 | Full-text PDF : | 194 | References: | 51 | First page: | 37 |
|