Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 98, Issue 2, Pages 258–270
DOI: https://doi.org/10.4213/mzm10604
(Mi mzm10604)
 

Representation of Real Normal $(T+H)$ Matrices in the Case where the Skew-Symmetric Parts of both Summands are Skew-Circulant Matrices

V. N. Chugunov

Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow
References:
Abstract: Another particular class of normal matrices expressible as the sum of real Toeplitz and Hankel matrices is described.
Keywords: Toeplitz matrix, Hankel matrix, skew-circulant matrix, normal real matrix, lower-triangular matrix, checkerboard matrix.
Funding agency Grant number
Russian Science Foundation 14-11-00806
This work was supported by the Russian Science Foundation under grant 14-11-00806.
Received: 18.03.2014
English version:
Mathematical Notes, 2015, Volume 98, Issue 2, Pages 289–300
DOI: https://doi.org/10.1134/S0001434615070317
Bibliographic databases:
Document Type: Article
UDC: 512
Language: Russian
Citation: V. N. Chugunov, “Representation of Real Normal $(T+H)$ Matrices in the Case where the Skew-Symmetric Parts of both Summands are Skew-Circulant Matrices”, Mat. Zametki, 98:2 (2015), 258–270; Math. Notes, 98:2 (2015), 289–300
Citation in format AMSBIB
\Bibitem{Chu15}
\by V.~N.~Chugunov
\paper Representation of Real Normal $(T+H)$ Matrices in the Case where the Skew-Symmetric Parts of both Summands are Skew-Circulant Matrices
\jour Mat. Zametki
\yr 2015
\vol 98
\issue 2
\pages 258--270
\mathnet{http://mi.mathnet.ru/mzm10604}
\crossref{https://doi.org/10.4213/mzm10604}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438480}
\elib{https://elibrary.ru/item.asp?id=24073734}
\transl
\jour Math. Notes
\yr 2015
\vol 98
\issue 2
\pages 289--300
\crossref{https://doi.org/10.1134/S0001434615070317}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000360070400031}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84940104365}
Linking options:
  • https://www.mathnet.ru/eng/mzm10604
  • https://doi.org/10.4213/mzm10604
  • https://www.mathnet.ru/eng/mzm/v98/i2/p258
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:249
    Full-text PDF :130
    References:42
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024