Abstract:
A certain wave equation for a medium with memory is considered. Its classical solution is constructed by using the classical solution of the transport system and the propagating wave formula.
Keywords:
wave equation, inhomogeneous medium with memory, transport system, Kelvin–Voight law of viscoelastic oscillations.
Citation:
A. N. Tsaritsanskiy, “Problem of the Propagation of Waves in an Inhomogeneous Medium with Memory”, Mat. Zametki, 98:3 (2015), 436–447; Math. Notes, 98:3 (2015), 492–502
\Bibitem{Tsa15}
\by A.~N.~Tsaritsanskiy
\paper Problem of the Propagation of Waves in an Inhomogeneous Medium with Memory
\jour Mat. Zametki
\yr 2015
\vol 98
\issue 3
\pages 436--447
\mathnet{http://mi.mathnet.ru/mzm10598}
\crossref{https://doi.org/10.4213/mzm10598}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438500}
\elib{https://elibrary.ru/item.asp?id=24073754}
\transl
\jour Math. Notes
\yr 2015
\vol 98
\issue 3
\pages 492--502
\crossref{https://doi.org/10.1134/S0001434615090151}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000363520200015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84944900686}
Linking options:
https://www.mathnet.ru/eng/mzm10598
https://doi.org/10.4213/mzm10598
https://www.mathnet.ru/eng/mzm/v98/i3/p436
This publication is cited in the following 3 articles:
A. V Borovskikh, “Metod rasprostranyayushchikhsya voln”, Differencialʹnye uravneniâ, 59:5 (2023), 619
A. V. Borovskikh, “Traveling Wave Method”, Diff Equat, 59:5 (2023), 629
A. N. Tsaritsanskii, “Diskretnyi i nepreryvnyi sluchai v zadache o rasprostranenii voln v srede s pamyatyu”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 19:3 (2015), 489–503