Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 100, Issue 4, Pages 510–518
DOI: https://doi.org/10.4213/mzm10585
(Mi mzm10585)
 

This article is cited in 2 scientific papers (total in 2 papers)

Riordan Arrays and Generalized Lagrange Series

E. V. Burlachenko
Full-text PDF (377 kB) Citations (2)
References:
Abstract: The theory of Riordan arrays studies the properties of formal power series and their sequences. The notion of generalized Lagrange series proposed in the present paper is intended to fill the gap in the methodology of this theory. Generalized Lagrange series appear in it implicitly, as various equalities. No special notation is provided for these series, although particular cases of these series are generalized binomial and generalized exponential series. We give the definition of generalized Lagrange series and study their relationship with ordinary Riordan arrays and, separately, with Riordan exponential arrays.
Keywords: Riordan array, Riordan group, generalized binomial series, Lagrange series.
Received: 28.06.2014
Revised: 09.02.2015
English version:
Mathematical Notes, 2016, Volume 100, Issue 4, Pages 531–539
DOI: https://doi.org/10.1134/S0001434616090248
Bibliographic databases:
Document Type: Article
UDC: 512
Language: Russian
Citation: E. V. Burlachenko, “Riordan Arrays and Generalized Lagrange Series”, Mat. Zametki, 100:4 (2016), 510–518; Math. Notes, 100:4 (2016), 531–539
Citation in format AMSBIB
\Bibitem{Bur16}
\by E.~V.~Burlachenko
\paper Riordan Arrays and Generalized Lagrange Series
\jour Mat. Zametki
\yr 2016
\vol 100
\issue 4
\pages 510--518
\mathnet{http://mi.mathnet.ru/mzm10585}
\crossref{https://doi.org/10.4213/mzm10585}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588873}
\zmath{https://zbmath.org/?q=an:1355.05016}
\elib{https://elibrary.ru/item.asp?id=27349870}
\transl
\jour Math. Notes
\yr 2016
\vol 100
\issue 4
\pages 531--539
\crossref{https://doi.org/10.1134/S0001434616090248}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000386774200024}
\elib{https://elibrary.ru/item.asp?id=27583049}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84992059396}
Linking options:
  • https://www.mathnet.ru/eng/mzm10585
  • https://doi.org/10.4213/mzm10585
  • https://www.mathnet.ru/eng/mzm/v100/i4/p510
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:447
    Full-text PDF :69
    References:56
    First page:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024