Abstract:
In this paper, we consider generalizations of Opial's inequality due to Willett, Godunova, Levin, and Rozanova. Cauchy-type mean-value theorems are proved and used in studying Stolarsky-type means defined by the obtained inequalities. Also, a method of producing n-exponentially convex and exponentially convex functions is applied.
Citation:
M. Andric, A. Barbir, J. Pečarić, “On Willett's, Godunova–Levin's, and Rozanova's Opial-Type Inequalities with Related Stolarsky-Type Means”, Mat. Zametki, 96:6 (2014), 803–819; Math. Notes, 96:6 (2014), 841–854
\Bibitem{AndBarPec14}
\by M.~Andric, A.~Barbir, J.~Pe{\v{c}}ari{\'c}
\paper On Willett's, Godunova--Levin's, and Rozanova's Opial-Type Inequalities with Related Stolarsky-Type Means
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 6
\pages 803--819
\mathnet{http://mi.mathnet.ru/mzm10560}
\crossref{https://doi.org/10.4213/mzm10560}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3343645}
\zmath{https://zbmath.org/?q=an:1314.26023}
\elib{https://elibrary.ru/item.asp?id=22834446}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 6
\pages 841--854
\crossref{https://doi.org/10.1134/S0001434614110212}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000347032700021}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919418177}
Linking options:
https://www.mathnet.ru/eng/mzm10560
https://doi.org/10.4213/mzm10560
https://www.mathnet.ru/eng/mzm/v96/i6/p803
This publication is cited in the following 2 articles:
Andric M., Barbir A., Pecaric J., Roqia G., “Corrigendum to “Generalizations of Opial-Type Inequalities in Several Independent Variables” Published in Demonstratio Math. 4(47) (2014), 324–335”, Demonstr. Math., 49:2 (2016), 149–154
Maja Andric, Ana Barbir, Josip Pecaric, Gholam Roqia, “Generalizations of Opial-Type Inequalities in Several Independent Variables”, Demonstratio Mathematica, 47:4 (2014)