Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 97, Issue 6, Pages 904–916
DOI: https://doi.org/10.4213/mzm10557
(Mi mzm10557)
 

Hamiltonian Paths in Distance Graphs

V. V. Utkin

Lomonosov Moscow State University
References:
Abstract: The object of study is the graph
$$ G(n,r,s)=(V(n,r),E(n,r,s)) $$
with
\begin{align*} V(n,r)&=\{v : v \subset \{1,\dots,n\}, \, |v|=r\}, \\ E(n,r,s)&=\{\{v,u\} : v,u \in V(n,r), \, |v \cap u|=s\}; \end{align*}
i.e., the vertices of the graph are $r$-subsets of the set $\mathcal{R}_n=\{1,\dots,n\}$, and two vertices are connected by an edge if these vertices intersect in precisely $s$ elements. Two-sided estimates for the number of Hamiltonian paths in the graph $G(n,k,1)$ as $n \to \infty$ are obtained.
Keywords: distance graph, Hamiltonian path, simple path, clique, hypergraph.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-03530
This work was supported by the Russian Foundation for Basic Research (grant no. 15-01-03530).
Received: 31.05.2014
Revised: 10.12.2014
English version:
Mathematical Notes, 2015, Volume 97, Issue 6, Pages 919–929
DOI: https://doi.org/10.1134/S0001434615050260
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: V. V. Utkin, “Hamiltonian Paths in Distance Graphs”, Mat. Zametki, 97:6 (2015), 904–916; Math. Notes, 97:6 (2015), 919–929
Citation in format AMSBIB
\Bibitem{Utk15}
\by V.~V.~Utkin
\paper Hamiltonian Paths in Distance Graphs
\jour Mat. Zametki
\yr 2015
\vol 97
\issue 6
\pages 904--916
\mathnet{http://mi.mathnet.ru/mzm10557}
\crossref{https://doi.org/10.4213/mzm10557}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3399146}
\elib{https://elibrary.ru/item.asp?id=23780178}
\transl
\jour Math. Notes
\yr 2015
\vol 97
\issue 6
\pages 919--929
\crossref{https://doi.org/10.1134/S0001434615050260}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000357050200026}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84933557668}
Linking options:
  • https://www.mathnet.ru/eng/mzm10557
  • https://doi.org/10.4213/mzm10557
  • https://www.mathnet.ru/eng/mzm/v97/i6/p904
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:324
    Full-text PDF :103
    References:61
    First page:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024