Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 99, Issue 5, Pages 732–751
DOI: https://doi.org/10.4213/mzm10555
(Mi mzm10555)
 

This article is cited in 18 scientific papers (total in 18 papers)

Oscillation, Rotation, and Wandering Exponents of Solutions of Differential Systems

I. N. Sergeev

Lomonosov Moscow State University
References:
Abstract: Several characteristics of the solutions of a differential system are defined and studied from a unified standpoint, namely, they are arranged in a certain order and unite all known and some new Lyapunov characteristics describing various oscillation and wandering properties. For second-order equations, all of these characteristics coincide with each other, and for autonomous systems, the set of values of each of these characteristics contains all absolute values of the imaginary parts of eigenvalues of the operator of the system.
Keywords: oscillation, rotation, and wandering exponents, differential equation, linear homogeneous system, autonomous system.
Received: 24.12.2013
English version:
Mathematical Notes, 2016, Volume 99, Issue 5, Pages 729–746
DOI: https://doi.org/10.1134/S0001434616050114
Bibliographic databases:
Document Type: Article
UDC: 517.926
Language: Russian
Citation: I. N. Sergeev, “Oscillation, Rotation, and Wandering Exponents of Solutions of Differential Systems”, Mat. Zametki, 99:5 (2016), 732–751; Math. Notes, 99:5 (2016), 729–746
Citation in format AMSBIB
\Bibitem{Ser16}
\by I.~N.~Sergeev
\paper Oscillation, Rotation, and Wandering Exponents of Solutions of Differential Systems
\jour Mat. Zametki
\yr 2016
\vol 99
\issue 5
\pages 732--751
\mathnet{http://mi.mathnet.ru/mzm10555}
\crossref{https://doi.org/10.4213/mzm10555}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507439}
\elib{https://elibrary.ru/item.asp?id=25865456}
\transl
\jour Math. Notes
\yr 2016
\vol 99
\issue 5
\pages 729--746
\crossref{https://doi.org/10.1134/S0001434616050114}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000382176900011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84977144664}
Linking options:
  • https://www.mathnet.ru/eng/mzm10555
  • https://doi.org/10.4213/mzm10555
  • https://www.mathnet.ru/eng/mzm/v99/i5/p732
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024