Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 99, Issue 4, Pages 574–587
DOI: https://doi.org/10.4213/mzm10554
(Mi mzm10554)
 

This article is cited in 2 scientific papers (total in 2 papers)

Approximation by Fourier Means and Generalized Moduli of Smoothness

K. V. Runovskii

Lomonosov Moscow State University, Chernomorsky Branch
Full-text PDF (570 kB) Citations (2)
References:
Abstract: The quality of approximation by Fourier means generated by an arbitrary generator with compact support in the spaces $L_p$, $1\le p\le\nobreak +\infty$, of $2\pi$-periodic $p$th integrable functions and in the space $C$ of continuous $2\pi$-periodic functions in terms of the generalized modulus of smoothness constructed from a $2\pi$-periodic generator is studied. Natural sufficient conditions on the generator of the approximation method and values of smoothness ensuring the equivalence of the corresponding approximation error and modulus are obtained. As applications, Fourier means generated by classical kernels as well as the classical moduli of smoothness are considered.
Keywords: approximation by Fourier means, approximation error, $2\pi$-periodic function, modulus of smoothness, the space $L_p$, $1\le p\le +\infty$, Fourier transform, Fourier mean, Fejér mean, Bochner–Riesz mean, Rogozinskii mean, Valée-Poussin mean.
Funding agency Grant number
Russian Foundation for Basic Research А-15-01-01236
This work was supported by the Russian Foundation for Basic Research (grant no. A-15-01-01236).
Received: 15.07.2014
Revised: 27.10.2015
English version:
Mathematical Notes, 2016, Volume 99, Issue 4, Pages 564–575
DOI: https://doi.org/10.1134/S0001434616030305
Bibliographic databases:
Document Type: Article
UDC: 517.51
Language: Russian
Citation: K. V. Runovskii, “Approximation by Fourier Means and Generalized Moduli of Smoothness”, Mat. Zametki, 99:4 (2016), 574–587; Math. Notes, 99:4 (2016), 564–575
Citation in format AMSBIB
\Bibitem{Run16}
\by K.~V.~Runovskii
\paper Approximation by Fourier Means and Generalized Moduli of Smoothness
\jour Mat. Zametki
\yr 2016
\vol 99
\issue 4
\pages 574--587
\mathnet{http://mi.mathnet.ru/mzm10554}
\crossref{https://doi.org/10.4213/mzm10554}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507422}
\elib{https://elibrary.ru/item.asp?id=25707705}
\transl
\jour Math. Notes
\yr 2016
\vol 99
\issue 4
\pages 564--575
\crossref{https://doi.org/10.1134/S0001434616030305}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376295200030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84969835088}
Linking options:
  • https://www.mathnet.ru/eng/mzm10554
  • https://doi.org/10.4213/mzm10554
  • https://www.mathnet.ru/eng/mzm/v99/i4/p574
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024