Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 5, Pages 762–772
DOI: https://doi.org/10.4213/mzm10536
(Mi mzm10536)
 

This article is cited in 1 scientific paper (total in 1 paper)

Formulas for Rational Interpolation and Remainders

A. K. Ramazanov

Kaluga Branch of Bauman Moscow State Technical University
Full-text PDF (464 kB) Citations (1)
References:
Abstract: This paper deals with the existence of interpolating rational functions serving as Thiele continued fraction convergents and also presents the expression for the remainder for such rational interpolations. These problems are similar to multipoint Padé approximations. For the limit case, the expression for the remainder in diagonal Padé approximations at zero is obtained; also a sufficiently simple expression for the exact value of the remainder in the case of the function $\sqrt{1+z}$ is derived.
Keywords: rational interpolation, Thiele continued fraction, continued fraction convergents, Padé approximation, remainder in the diagonal Padé approximation.
Received: 14.02.2013
Revised: 20.09.2013
English version:
Mathematical Notes, 2014, Volume 96, Issue 5, Pages 767–776
DOI: https://doi.org/10.1134/S0001434614110157
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: A. K. Ramazanov, “Formulas for Rational Interpolation and Remainders”, Mat. Zametki, 96:5 (2014), 762–772; Math. Notes, 96:5 (2014), 767–776
Citation in format AMSBIB
\Bibitem{Ram14}
\by A.~K.~Ramazanov
\paper Formulas for Rational Interpolation and Remainders
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 5
\pages 762--772
\mathnet{http://mi.mathnet.ru/mzm10536}
\crossref{https://doi.org/10.4213/mzm10536}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3343639}
\zmath{https://zbmath.org/?q=an:1314.41001}
\elib{https://elibrary.ru/item.asp?id=22834441}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 5
\pages 767--776
\crossref{https://doi.org/10.1134/S0001434614110157}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000347032700015}
\elib{https://elibrary.ru/item.asp?id=24022534}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919880201}
Linking options:
  • https://www.mathnet.ru/eng/mzm10536
  • https://doi.org/10.4213/mzm10536
  • https://www.mathnet.ru/eng/mzm/v96/i5/p762
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:345
    Full-text PDF :156
    References:79
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024