Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 5, Pages 674–686
DOI: https://doi.org/10.4213/mzm10535
(Mi mzm10535)
 

This article is cited in 3 scientific papers (total in 3 papers)

Optimal Arguments in the Jackson–Stechkin Inequality in $L_2(\mathbb{R}^d)$ with Dunkl Weight

V. I. Ivanov, A. V. Ivanov

Tula State University
Full-text PDF (554 kB) Citations (3)
References:
Abstract: The paper is devoted to the determination of the optimal arguments in the sharp Jackson–Stechkin inequality with modulus of continuity of order $r$ in the space $L_2(\mathbb{R}^d)$ with Dunkl weight defined by the root system $R$ and a nonnegative function of multiplicity $k$. If
$$ \lambda_k=\frac d2-1+\sum_{\alpha\in R_+}k(\alpha)=\frac12, $$
where $R_+$ is the positive subsystem of the root system, then the optimal arguments for all $r$ coincide. If $\lambda_k\ne 1/2$, then the optimal argument for the modulus of continuity of second order is greater than for the first order. Such patterns are related to the arithmetic properties of zeros of Bessel functions.
Keywords: Jackson–Stechkin inequality, the space $L_2(\mathbb{R}^d)$ with Dunkl weight, modulus of continuity, Logan problem, Dunkl transform, Bessel function, Hankel transform, Borel probability measure.
Received: 16.06.2014
English version:
Mathematical Notes, 2014, Volume 96, Issue 5, Pages 666–677
DOI: https://doi.org/10.1134/S0001434614110054
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: V. I. Ivanov, A. V. Ivanov, “Optimal Arguments in the Jackson–Stechkin Inequality in $L_2(\mathbb{R}^d)$ with Dunkl Weight”, Mat. Zametki, 96:5 (2014), 674–686; Math. Notes, 96:5 (2014), 666–677
Citation in format AMSBIB
\Bibitem{IvaIva14}
\by V.~I.~Ivanov, A.~V.~Ivanov
\paper Optimal Arguments in the Jackson--Stechkin Inequality in~$L_2(\mathbb{R}^d)$ with Dunkl Weight
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 5
\pages 674--686
\mathnet{http://mi.mathnet.ru/mzm10535}
\crossref{https://doi.org/10.4213/mzm10535}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3343629}
\zmath{https://zbmath.org/?q=an:06435035}
\elib{https://elibrary.ru/item.asp?id=22834433}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 5
\pages 666--677
\crossref{https://doi.org/10.1134/S0001434614110054}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000347032700005}
\elib{https://elibrary.ru/item.asp?id=24025999}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919950820}
Linking options:
  • https://www.mathnet.ru/eng/mzm10535
  • https://doi.org/10.4213/mzm10535
  • https://www.mathnet.ru/eng/mzm/v96/i5/p674
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:531
    Full-text PDF :172
    References:75
    First page:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024