Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 99, Issue 2, Pages 215–238
DOI: https://doi.org/10.4213/mzm10506
(Mi mzm10506)
 

This article is cited in 16 scientific papers (total in 16 papers)

Inequalities between Best Polynomial Approximations and Some Smoothness Characteristics in the Space $L_2$ and Widths of Classes of Functions

S. B. Vakarchuka, V. I. Zabutnayab

a Alfred Nobel University Dnepropetrovsk
b Dnepropetrovsk National University
References:
Abstract: We obtain exact constants in Jackson-type inequalities for smoothness characteristics $\Lambda_k(f)$, $k\in \mathbb{N}$, defined by averaging the $k$th-order finite differences of functions $f \in L_2$. On the basis of this, for differentiable functions in the classes $L^r_2$, $r\in \mathbb{N}$, we refine the constants in Jackson-type inequalities containing the $k$th-order modulus of continuity $\omega_k$. For classes of functions defined by their smoothness characteristics $\Lambda_k(f)$ and majorants $\Phi$ satisfying a number of conditions, we calculate the exact values of certain $n$-widths.
Keywords: best polynomial approximation, smoothness characteristics, Jackson-type inequality, modulus of continuity, Bernstein $n$-width of a function class, Rolle's theorem.
Received: 29.04.2014
English version:
Mathematical Notes, 2016, Volume 99, Issue 2, Pages 222–242
DOI: https://doi.org/10.1134/S0001434616010259
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: S. B. Vakarchuk, V. I. Zabutnaya, “Inequalities between Best Polynomial Approximations and Some Smoothness Characteristics in the Space $L_2$ and Widths of Classes of Functions”, Mat. Zametki, 99:2 (2016), 215–238; Math. Notes, 99:2 (2016), 222–242
Citation in format AMSBIB
\Bibitem{VakZab16}
\by S.~B.~Vakarchuk, V.~I.~Zabutnaya
\paper Inequalities between Best Polynomial Approximations and Some Smoothness Characteristics in the Space~$L_2$ and Widths of Classes of Functions
\jour Mat. Zametki
\yr 2016
\vol 99
\issue 2
\pages 215--238
\mathnet{http://mi.mathnet.ru/mzm10506}
\crossref{https://doi.org/10.4213/mzm10506}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3462703}
\elib{https://elibrary.ru/item.asp?id=25707661}
\transl
\jour Math. Notes
\yr 2016
\vol 99
\issue 2
\pages 222--242
\crossref{https://doi.org/10.1134/S0001434616010259}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000373228900025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84962376081}
Linking options:
  • https://www.mathnet.ru/eng/mzm10506
  • https://doi.org/10.4213/mzm10506
  • https://www.mathnet.ru/eng/mzm/v99/i2/p215
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:413
    Full-text PDF :87
    References:62
    First page:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024