Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 97, Issue 4, Pages 591–603
DOI: https://doi.org/10.4213/mzm10505
(Mi mzm10505)
 

Nonexistence of Global Solutions for Quasilinear Backward Parabolic Inequalities with $p$-Laplace-Type Operator

B. Tsegau

Peoples Friendship University of Russia, Moscow
References:
Abstract: In this paper, we prove the nonexistence of global solutions to the quasilinear backward parabolic inequality
$$ u_{t}+\operatorname{div}(|x|^{\alpha}|u|^{\beta}|Du|^{p-2}Du) \ge |x|^{\gamma}|u|^{q-1}u,\qquad x\in\Omega,\quad t\ge 0 $$
with homogeneous Dirichlet boundary condition and bounded integrable sign-changing initial function, where $\Omega$ is a bounded smooth domain in $\mathbb{R}^N$. The proof is based on the derivation of a priori estimates for the solutions and involves the algebraic analysis of the integral form of the inequality with an optimal choice of test functions. We establish conditions for the nonexistence of solutions based on the weak formulation of the problem with test functions of the form
$$ \phi_{R,\epsilon}(x,t)=(\pm u^{\pm}(x,t)+\epsilon)^{\delta} \varphi_{R}(x,t)\qquad\text{for}\quad \epsilon>0,\quad \delta>0, $$
where $u^{+}$ and $u^{-}$ are the positive and negative parts of the solution $u$ of the problem and $\varphi_{R}$ is the standard cut-off function whose support depends on the parameter $R$.
Keywords: quasilinear backward parabolic inequality, $p$-Laplace-type operator, Dirichlet boundary condition, Young's inequality, Fatou theorem, Hölder's inequality.
Received: 02.02.2014
English version:
Mathematical Notes, 2015, Volume 97, Issue 4, Pages 605–615
DOI: https://doi.org/10.1134/S0001434615030311
Bibliographic databases:
Document Type: Article
UDC: 517.945
Language: Russian
Citation: B. Tsegau, “Nonexistence of Global Solutions for Quasilinear Backward Parabolic Inequalities with $p$-Laplace-Type Operator”, Mat. Zametki, 97:4 (2015), 591–603; Math. Notes, 97:4 (2015), 605–615
Citation in format AMSBIB
\Bibitem{Tse15}
\by B.~Tsegau
\paper Nonexistence of Global Solutions for Quasilinear Backward Parabolic Inequalities with $p$-Laplace-Type Operator
\jour Mat. Zametki
\yr 2015
\vol 97
\issue 4
\pages 591--603
\mathnet{http://mi.mathnet.ru/mzm10505}
\crossref{https://doi.org/10.4213/mzm10505}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3370544}
\zmath{https://zbmath.org/?q=an:06455294}
\elib{https://elibrary.ru/item.asp?id=23421546}
\transl
\jour Math. Notes
\yr 2015
\vol 97
\issue 4
\pages 605--615
\crossref{https://doi.org/10.1134/S0001434615030311}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353566800031}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928671709}
Linking options:
  • https://www.mathnet.ru/eng/mzm10505
  • https://doi.org/10.4213/mzm10505
  • https://www.mathnet.ru/eng/mzm/v97/i4/p591
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:320
    Full-text PDF :146
    References:57
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024