Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2004, Volume 76, Issue 2, Pages 265–285
DOI: https://doi.org/10.4213/mzm105
(Mi mzm105)
 

The Concentration Function of Additive Functions with Special Weight

N. M. Timofeev, M. B. Khripunova

Vladimir State Pedagogical University
References:
Abstract: Suppose that $g(n)$ is an additive real-valued function,
$$ W(N)=4+\min_\lambda\lambda^2+\sum_{p<N}\frac1p\min(1,(g(p)-\lambda\log p)^2), \quad E(N)=4+\sum_{p<N,\ g(p)\ne0}\frac1p. $$
In this paper, we prove the existence of constants $C_1$$C_2$ such that the following inequalities hold:
$$ \begin{aligned} &\sup_a|\{n,m,k:m,k\in\mathbb Z,\ n\in\mathbb N,\ n+m^2+k^2=N,\ g(n)\in[a,a+1)\}| \le\frac{C_1N}{\sqrt{W(N)}}, \\ &\sup_a|\{n,m,k:m,k\in\mathbb Z,\ n\in\mathbb N,\ n+m^2+k^2=N,\ g(n)=a\}| \le\frac{C_2N}{\sqrt{E(N)}}. \end{aligned} $$
The obtained estimates are order-sharp.
Received: 10.11.2001
English version:
Mathematical Notes, 2004, Volume 76, Issue 2, Pages 244–263
DOI: https://doi.org/10.1023/B:MATN.0000036762.34709.45
Bibliographic databases:
UDC: 511
Language: Russian
Citation: N. M. Timofeev, M. B. Khripunova, “The Concentration Function of Additive Functions with Special Weight”, Mat. Zametki, 76:2 (2004), 265–285; Math. Notes, 76:2 (2004), 244–263
Citation in format AMSBIB
\Bibitem{TimKhr04}
\by N.~M.~Timofeev, M.~B.~Khripunova
\paper The Concentration Function of Additive Functions with Special Weight
\jour Mat. Zametki
\yr 2004
\vol 76
\issue 2
\pages 265--285
\mathnet{http://mi.mathnet.ru/mzm105}
\crossref{https://doi.org/10.4213/mzm105}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2098997}
\zmath{https://zbmath.org/?q=an:02121463}
\transl
\jour Math. Notes
\yr 2004
\vol 76
\issue 2
\pages 244--263
\crossref{https://doi.org/10.1023/B:MATN.0000036762.34709.45}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000223760500027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-4043099098}
Linking options:
  • https://www.mathnet.ru/eng/mzm105
  • https://doi.org/10.4213/mzm105
  • https://www.mathnet.ru/eng/mzm/v76/i2/p265
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024