|
The Concentration Function of Additive Functions with Special Weight
N. M. Timofeev, M. B. Khripunova Vladimir State Pedagogical University
Abstract:
Suppose that $g(n)$ is an additive real-valued function,
$$
W(N)=4+\min_\lambda\lambda^2+\sum_{p<N}\frac1p\min(1,(g(p)-\lambda\log p)^2), \quad
E(N)=4+\sum_{p<N,\ g(p)\ne0}\frac1p.
$$
In this paper, we prove the existence of constants $C_1$, $C_2$ such that the following inequalities hold:
$$
\begin{aligned}
&\sup_a|\{n,m,k:m,k\in\mathbb Z,\ n\in\mathbb N,\ n+m^2+k^2=N,\ g(n)\in[a,a+1)\}| \le\frac{C_1N}{\sqrt{W(N)}},
\\
&\sup_a|\{n,m,k:m,k\in\mathbb Z,\ n\in\mathbb N,\ n+m^2+k^2=N,\ g(n)=a\}|
\le\frac{C_2N}{\sqrt{E(N)}}.
\end{aligned}
$$
The obtained estimates are order-sharp.
Received: 10.11.2001
Citation:
N. M. Timofeev, M. B. Khripunova, “The Concentration Function of Additive Functions with Special Weight”, Mat. Zametki, 76:2 (2004), 265–285; Math. Notes, 76:2 (2004), 244–263
Linking options:
https://www.mathnet.ru/eng/mzm105https://doi.org/10.4213/mzm105 https://www.mathnet.ru/eng/mzm/v76/i2/p265
|
|