Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 1, Pages 88–100
DOI: https://doi.org/10.4213/mzm10476
(Mi mzm10476)
 

This article is cited in 8 scientific papers (total in 8 papers)

On the Representation of Localized Functions in $\mathbb R^2$ by Maslov's Canonical Operator

V. E. Nazaikinskiiab

a Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
b A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences, Moscow
Full-text PDF (548 kB) Citations (8)
References:
Abstract: We prove that localized functions can be represented in the form of an integral over a parameter, the integrand being Maslov's canonical operator applied to an amplitude obtained from the Fourier transform of the function to be represented. This representation generalizes an earlier one obtained by Dobrokhotov, Tirozzi, and Shafarevich and permits representing localized initial data for wave type equations with the use of an invariant Lagrangian manifold, which simplifies the asymptotic solution formulas dramatically in many cases.
Keywords: wave equation, asymptotics, localized initial data, integral representation, invariant Lagrangian manifold, Maslov's canonical operator.
Received: 11.04.2014
English version:
Mathematical Notes, 2014, Volume 96, Issue 1, Pages 99–109
DOI: https://doi.org/10.1134/S0001434614070098
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: V. E. Nazaikinskii, “On the Representation of Localized Functions in $\mathbb R^2$ by Maslov's Canonical Operator”, Mat. Zametki, 96:1 (2014), 88–100; Math. Notes, 96:1 (2014), 99–109
Citation in format AMSBIB
\Bibitem{Naz14}
\by V.~E.~Nazaikinskii
\paper On the Representation of Localized Functions in~$\mathbb R^2$ by Maslov's Canonical Operator
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 1
\pages 88--100
\mathnet{http://mi.mathnet.ru/mzm10476}
\crossref{https://doi.org/10.4213/mzm10476}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344277}
\zmath{https://zbmath.org/?q=an:06434966}
\elib{https://elibrary.ru/item.asp?id=21826528}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 1
\pages 99--109
\crossref{https://doi.org/10.1134/S0001434614070098}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000340938800009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84906502653}
Linking options:
  • https://www.mathnet.ru/eng/mzm10476
  • https://doi.org/10.4213/mzm10476
  • https://www.mathnet.ru/eng/mzm/v96/i1/p88
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:402
    Full-text PDF :178
    References:53
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024