Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 97, Issue 6, Pages 936–941
DOI: https://doi.org/10.4213/mzm10471
(Mi mzm10471)
 

This article is cited in 3 scientific papers (total in 3 papers)

Absolutely Closed Groups in the Class of $2$-Step Nilpotent Torsion-Free Groups

S. A. Shakhova

Altai State University, Barnaul
Full-text PDF (440 kB) Citations (3)
References:
Abstract: It is proved that divisible groups and only these groups are absolutely closed (with respect to the operator of dominion) in the class of $2$-step nilpotent torsion-free groups. It is established that the additive group of the rationals is $1$-closed in an arbitrary quasivariety of nilpotent torsion-free groups and $3$-closed in an arbitrary quasivariety of $2$-step nilpotent torsion-free groups.
Keywords: quasivariety, divisible group, torsion-free group, dominion, absolutely closed group, $2$-step nilpotent torsion-free group.
Received: 03.02.2014
Revised: 08.07.2014
English version:
Mathematical Notes, 2015, Volume 97, Issue 6, Pages 946–950
DOI: https://doi.org/10.1134/S0001434615050302
Bibliographic databases:
Document Type: Article
UDC: 512.54.01
Language: Russian
Citation: S. A. Shakhova, “Absolutely Closed Groups in the Class of $2$-Step Nilpotent Torsion-Free Groups”, Mat. Zametki, 97:6 (2015), 936–941; Math. Notes, 97:6 (2015), 946–950
Citation in format AMSBIB
\Bibitem{Sha15}
\by S.~A.~Shakhova
\paper Absolutely Closed Groups in the Class of $2$-Step Nilpotent Torsion-Free Groups
\jour Mat. Zametki
\yr 2015
\vol 97
\issue 6
\pages 936--941
\mathnet{http://mi.mathnet.ru/mzm10471}
\crossref{https://doi.org/10.4213/mzm10471}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3399150}
\elib{https://elibrary.ru/item.asp?id=23780182}
\transl
\jour Math. Notes
\yr 2015
\vol 97
\issue 6
\pages 946--950
\crossref{https://doi.org/10.1134/S0001434615050302}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000357050200030}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84933565885}
Linking options:
  • https://www.mathnet.ru/eng/mzm10471
  • https://doi.org/10.4213/mzm10471
  • https://www.mathnet.ru/eng/mzm/v97/i6/p936
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024