Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 97, Issue 5, Pages 718–732
DOI: https://doi.org/10.4213/mzm10470
(Mi mzm10470)
 

This article is cited in 8 scientific papers (total in 8 papers)

Best Approximation Rate of Constants by Simple Partial Fractions and Chebyshev Alternance

M. A. Komarov

Vladimir State University
Full-text PDF (597 kB) Citations (8)
References:
Abstract: We consider the problem of interpolation and best uniform approximation of constants $c\ne 0$ by simple partial fractions $\rho_n$ of order $n$ on an interval $[a,b]$. (All functions and numbers considered are real.) For the case in which $n>4|c|(b-a)$, we prove that the interpolation problem is uniquely solvable, obtain upper and lower bounds, sharp in order $n$, for the interpolation error on the set of all interpolation points, and show that the poles of the interpolating fraction lie outside the disk with diameter $[a,b]$. We obtain an analog of Chebyshev's classical theorem on the minimum deviation of a monic polynomial of degree $n$ from a constant. Namely, we show that, for $n>4|c|(b-a)$, the best approximation fraction $\rho_n^*$ for the constant $c$ on $[a,b]$ is unique and can be characterized by the Chebyshev alternance of $n+1$ points for the difference $\rho_n^*-c$. For the minimum deviations, we obtain an estimate sharp in order $n$.
Keywords: best approximation of constants, simple partial fraction, Chebyshev alternance.
Funding agency Grant number
Russian Foundation for Basic Research 12-01-31471 мол_а
Ministry of Education and Science of the Russian Federation 14.B37.21.0369
This work was supported by the Ministry of Education and Science of the Russian Federation (grant no. 14.B37.21.0369) and by the Russian Foundation for Basic Research (grant no. 12-01-31471 mol_a).
Received: 24.02.2014
Revised: 21.10.2014
English version:
Mathematical Notes, 2015, Volume 97, Issue 5, Pages 725–737
DOI: https://doi.org/10.1134/S0001434615050077
Bibliographic databases:
Document Type: Article
UDC: 517.538
Language: Russian
Citation: M. A. Komarov, “Best Approximation Rate of Constants by Simple Partial Fractions and Chebyshev Alternance”, Mat. Zametki, 97:5 (2015), 718–732; Math. Notes, 97:5 (2015), 725–737
Citation in format AMSBIB
\Bibitem{Kom15}
\by M.~A.~Komarov
\paper Best Approximation Rate of Constants by Simple Partial Fractions and Chebyshev Alternance
\jour Mat. Zametki
\yr 2015
\vol 97
\issue 5
\pages 718--732
\mathnet{http://mi.mathnet.ru/mzm10470}
\crossref{https://doi.org/10.4213/mzm10470}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3370556}
\elib{https://elibrary.ru/item.asp?id=23421559}
\transl
\jour Math. Notes
\yr 2015
\vol 97
\issue 5
\pages 725--737
\crossref{https://doi.org/10.1134/S0001434615050077}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000357050200007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84933556331}
Linking options:
  • https://www.mathnet.ru/eng/mzm10470
  • https://doi.org/10.4213/mzm10470
  • https://www.mathnet.ru/eng/mzm/v97/i5/p718
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:496
    Full-text PDF :164
    References:72
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024