Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2016, Volume 99, Issue 4, Pages 489–501
DOI: https://doi.org/10.4213/mzm10461
(Mi mzm10461)
 

This article is cited in 11 scientific papers (total in 11 papers)

On the Multiplicity of Eigenvalues of the Sturm–Liouville Problem on Graphs

A. T. Diaba, B. K. Kaldybekovab, O. M. Penkincb

a Ain Shams University
b Kazakh-British Technical University
c Voronezh State University
References:
Abstract: Bounds for the multiplicity of the eigenvalues of the Sturm–Liouville problem on a graph, which are valid for a wide class of consistency (transmission) conditions at the vertices of the graph, are given. The multiplicities are estimated using the topological characteristics of the graph. In the framework of the notions that we use, the bounds turn out to be exact.
Keywords: geometric graph, ordinary differential equation on a graph, Sturm–Liouville problem on a graph, transmission conditions, multiplicity of eigenvalues.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan 0115РК00643
0115РК02687
This work was supported by the Ministry of Education and Science of the Republic of Kazakhstan (projects 0115RK00643 and 0115RK02687).
Received: 23.03.2014
Revised: 09.08.2015
English version:
Mathematical Notes, 2016, Volume 99, Issue 4, Pages 492–502
DOI: https://doi.org/10.1134/S0001434616030226
Bibliographic databases:
Document Type: Article
UDC: 517.927
Language: Russian
Citation: A. T. Diab, B. K. Kaldybekova, O. M. Penkin, “On the Multiplicity of Eigenvalues of the Sturm–Liouville Problem on Graphs”, Mat. Zametki, 99:4 (2016), 489–501; Math. Notes, 99:4 (2016), 492–502
Citation in format AMSBIB
\Bibitem{DiaKalPen16}
\by A.~T.~Diab, B.~K.~Kaldybekova, O.~M.~Penkin
\paper On the Multiplicity of Eigenvalues of the Sturm--Liouville Problem on Graphs
\jour Mat. Zametki
\yr 2016
\vol 99
\issue 4
\pages 489--501
\mathnet{http://mi.mathnet.ru/mzm10461}
\crossref{https://doi.org/10.4213/mzm10461}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507414}
\elib{https://elibrary.ru/item.asp?id=25707696}
\transl
\jour Math. Notes
\yr 2016
\vol 99
\issue 4
\pages 492--502
\crossref{https://doi.org/10.1134/S0001434616030226}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376295200022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84969837198}
Linking options:
  • https://www.mathnet.ru/eng/mzm10461
  • https://doi.org/10.4213/mzm10461
  • https://www.mathnet.ru/eng/mzm/v99/i4/p489
  • This publication is cited in the following 11 articles:
    1. S. A. Karkuzaev, R. Ch. Kulaev, “Nizhnie otsenki veduschego sobstvennogo znacheniya laplasiana na grafe”, Matem. zametki, 117:2 (2025), 270–284  mathnet  crossref
    2. M. B. Zvereva, “A Model of String System Deformations on a Star Graph with Nonlinear Condition at the Node”, J Math Sci, 283:1 (2024), 76  crossref
    3. A. A. Urtaeva, “Upper bounds for the eigenvalue multiplicities of a fourth-order differential operator on a graph”, J. Appl. Industr. Math., 18:2 (2024), 352–360  mathnet  crossref  crossref
    4. M. B. Zvereva, M. I. Kamenskii, “Problem on string system vibrations on star-shaped graph with nonlinear condition at node”, Ufa Math. J., 16:1 (2024), 34–52  mathnet  crossref
    5. R. Ch Kulaev, S. A Karkuzaev, “BOTTOM ESTIMATES FOR THE MINIMAL EIGENVALUE OF THE BI-LAPLACIAN ON A GRAPH”, Differencialʹnye uravneniâ, 60:8 (2024), 1034  crossref
    6. R. Ch. Kulaev, S. A. Karkuzaev, “Lower Bounds for the Minimum Eigenvalue of the bi-Laplacian on a Graph”, Diff Equat, 60:8 (2024), 1014  crossref
    7. M. Sh. Burlutskaya, M. B. Zvereva, M. I. Kamenskii, “Boundary Value Problem on a Geometric Star-Graph with a Nonlinear Condition at a Node”, Math. Notes, 114:2 (2023), 275–279  mathnet  crossref  crossref
    8. M. B. Zvereva, “Model deformatsii sistemy stiltesovskikh strun s nelineinym usloviem”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:4 (2022), 528–545  mathnet  crossref  mathscinet
    9. M. B. Zvereva, “Model deformatsii strunnoi sistemy na grafe-zvezde s nelineinym usloviem v uzle”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 68, no. 4, Rossiiskii universitet druzhby narodov, M., 2022, 635–652  mathnet  crossref  mathscinet
    10. R. Ch. Kulaev, A. A. Urtaeva, “On the Multiplicity of Eigenvalues of a Fourth-Order Differential Operator on a Graph”, Diff Equat, 58:7 (2022), 869  crossref
    11. M. Sh. Burlutskaya, “Some properties of functional-differential operators with involution ν(x)=1x and their applications”, Russian Math. (Iz. VUZ), 65:5 (2021), 69–76  mathnet  crossref  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:412
    Full-text PDF :66
    References:65
    First page:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025