Abstract:
Bounds for the multiplicity of the eigenvalues of the Sturm–Liouville problem on a graph, which are valid for a wide class of consistency (transmission) conditions at the vertices of the graph, are given. The multiplicities are estimated using the topological characteristics of the graph. In the framework of the notions that we use, the bounds turn out to be exact.
Keywords:
geometric graph, ordinary differential equation on a graph, Sturm–Liouville problem on a graph, transmission conditions, multiplicity of eigenvalues.
Citation:
A. T. Diab, B. K. Kaldybekova, O. M. Penkin, “On the Multiplicity of Eigenvalues of the Sturm–Liouville Problem on Graphs”, Mat. Zametki, 99:4 (2016), 489–501; Math. Notes, 99:4 (2016), 492–502
\Bibitem{DiaKalPen16}
\by A.~T.~Diab, B.~K.~Kaldybekova, O.~M.~Penkin
\paper On the Multiplicity of Eigenvalues of the Sturm--Liouville Problem on Graphs
\jour Mat. Zametki
\yr 2016
\vol 99
\issue 4
\pages 489--501
\mathnet{http://mi.mathnet.ru/mzm10461}
\crossref{https://doi.org/10.4213/mzm10461}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507414}
\elib{https://elibrary.ru/item.asp?id=25707696}
\transl
\jour Math. Notes
\yr 2016
\vol 99
\issue 4
\pages 492--502
\crossref{https://doi.org/10.1134/S0001434616030226}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000376295200022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84969837198}
Linking options:
https://www.mathnet.ru/eng/mzm10461
https://doi.org/10.4213/mzm10461
https://www.mathnet.ru/eng/mzm/v99/i4/p489
This publication is cited in the following 11 articles:
S. A. Karkuzaev, R. Ch. Kulaev, “Nizhnie otsenki veduschego sobstvennogo znacheniya laplasiana na grafe”, Matem. zametki, 117:2 (2025), 270–284
M. B. Zvereva, “A Model of String System Deformations on a Star Graph with Nonlinear Condition at the Node”, J Math Sci, 283:1 (2024), 76
A. A. Urtaeva, “Upper bounds for the eigenvalue multiplicities of a fourth-order differential operator on a graph”, J. Appl. Industr. Math., 18:2 (2024), 352–360
M. B. Zvereva, M. I. Kamenskii, “Problem on string system vibrations on star-shaped graph with nonlinear condition at node”, Ufa Math. J., 16:1 (2024), 34–52
R. Ch Kulaev, S. A Karkuzaev, “BOTTOM ESTIMATES FOR THE MINIMAL EIGENVALUE OF THE BI-LAPLACIAN ON A GRAPH”, Differencialʹnye uravneniâ, 60:8 (2024), 1034
R. Ch. Kulaev, S. A. Karkuzaev, “Lower Bounds for the Minimum Eigenvalue of the bi-Laplacian
on a Graph”, Diff Equat, 60:8 (2024), 1014
M. Sh. Burlutskaya, M. B. Zvereva, M. I. Kamenskii, “Boundary Value Problem on a Geometric Star-Graph with a Nonlinear Condition at a Node”, Math. Notes, 114:2 (2023), 275–279
M. B. Zvereva, “Model deformatsii sistemy stiltesovskikh strun s nelineinym usloviem”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:4 (2022), 528–545
M. B. Zvereva, “Model deformatsii strunnoi sistemy na grafe-zvezde s nelineinym usloviem v uzle”, Differentsialnye i funktsionalno-differentsialnye uravneniya, SMFN, 68, no. 4, Rossiiskii universitet druzhby narodov, M., 2022, 635–652
R. Ch. Kulaev, A. A. Urtaeva, “On the Multiplicity of Eigenvalues of a Fourth-Order Differential Operator on a Graph”, Diff Equat, 58:7 (2022), 869
M. Sh. Burlutskaya, “Some properties of functional-differential operators with involution ν(x)=1−x and their applications”, Russian Math. (Iz. VUZ), 65:5 (2021), 69–76