Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 95, Issue 3, Pages 350–358
DOI: https://doi.org/10.4213/mzm10425
(Mi mzm10425)
 

On the Deformation Method of Study of Global Asymptotic Stability

G. E. Grishaninaa, N. G. Inozemtsevaa, M. B. Sadovnikovab

a Dubna International University for Nature, Society, and Man
b M. V. Lomonosov Moscow State University
References:
Abstract: We consider the one-parameter family of systems
$$ x'=F(x,\lambda),\qquad x\in\mathbb R^n, \quad 0\le\lambda\le1, $$
where $F\colon \mathbb R^n\times[0,1] \to \mathbb R^n$ is a continuous vector field. The solution $x(t)=\varphi(t,y,\lambda)$ is uniquely determined by the initial condition $x(0)=y=\varphi(0,y,\lambda)$ and can be continued to the whole axis $(-\infty,+\infty)$ for all $\lambda\in[0,1]$. We obtain conditions ensuring the preservation of the property of global asymptotic stability of the stationary solution of such a system as the parameter $\lambda$ varies.
Keywords: matrix first-order differential equation, global asymptotic stability of solutions, deformation method, Lyapunov stability.
Received: 20.05.2013
English version:
Mathematical Notes, 2014, Volume 95, Issue 3, Pages 316–323
DOI: https://doi.org/10.1134/S0001434614030043
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: G. E. Grishanina, N. G. Inozemtseva, M. B. Sadovnikova, “On the Deformation Method of Study of Global Asymptotic Stability”, Mat. Zametki, 95:3 (2014), 350–358; Math. Notes, 95:3 (2014), 316–323
Citation in format AMSBIB
\Bibitem{GriInoSad14}
\by G.~E.~Grishanina, N.~G.~Inozemtseva, M.~B.~Sadovnikova
\paper On the Deformation Method of Study of Global Asymptotic Stability
\jour Mat. Zametki
\yr 2014
\vol 95
\issue 3
\pages 350--358
\mathnet{http://mi.mathnet.ru/mzm10425}
\crossref{https://doi.org/10.4213/mzm10425}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3298889}
\elib{https://elibrary.ru/item.asp?id=21276987}
\transl
\jour Math. Notes
\yr 2014
\vol 95
\issue 3
\pages 316--323
\crossref{https://doi.org/10.1134/S0001434614030043}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000335457300004}
\elib{https://elibrary.ru/item.asp?id=21874608}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899681976}
Linking options:
  • https://www.mathnet.ru/eng/mzm10425
  • https://doi.org/10.4213/mzm10425
  • https://www.mathnet.ru/eng/mzm/v95/i3/p350
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:330
    Full-text PDF :149
    References:65
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024