|
On the Deformation Method of Study of Global Asymptotic Stability
G. E. Grishaninaa, N. G. Inozemtsevaa, M. B. Sadovnikovab a Dubna International University for Nature, Society, and Man
b M. V. Lomonosov Moscow State University
Abstract:
We consider the one-parameter family of systems
$$
x'=F(x,\lambda),\qquad x\in\mathbb R^n, \quad 0\le\lambda\le1,
$$
where $F\colon \mathbb R^n\times[0,1] \to \mathbb R^n$ is a continuous vector field. The solution $x(t)=\varphi(t,y,\lambda)$ is uniquely determined by the initial condition $x(0)=y=\varphi(0,y,\lambda)$ and can be continued to the whole axis $(-\infty,+\infty)$ for all $\lambda\in[0,1]$. We obtain conditions ensuring the preservation of the property of global asymptotic stability of the stationary solution of such a system as the parameter $\lambda$ varies.
Keywords:
matrix first-order differential equation, global asymptotic stability of solutions, deformation method, Lyapunov stability.
Received: 20.05.2013
Citation:
G. E. Grishanina, N. G. Inozemtseva, M. B. Sadovnikova, “On the Deformation Method of Study of Global Asymptotic Stability”, Mat. Zametki, 95:3 (2014), 350–358; Math. Notes, 95:3 (2014), 316–323
Linking options:
https://www.mathnet.ru/eng/mzm10425https://doi.org/10.4213/mzm10425 https://www.mathnet.ru/eng/mzm/v95/i3/p350
|
Statistics & downloads: |
Abstract page: | 330 | Full-text PDF : | 149 | References: | 65 | First page: | 16 |
|