Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 95, Issue 3, Pages 323–334
DOI: https://doi.org/10.4213/mzm10421
(Mi mzm10421)
 

This article is cited in 1 scientific paper (total in 1 paper)

Quasirecognition by Prime Graph of $^2D_{n}(3^\alpha)$ where $n=4m+1\ge 21$ and $\alpha$ is Odd

A. Babai, B. Khosravi

Amirkabir University of Technology, Iran
Full-text PDF (552 kB) Citations (1)
References:
Abstract: Let $G$ be a finite group. The prime graph of $G$ is denoted by $\Gamma(G)$. In this paper, as the main result, we show that if $G$ is a finite group such that $\Gamma(G)=\Gamma(^2D_n(3^\alpha))$, where $n=4m+1$ and $\alpha$ is odd, then $G$ has a unique non-Abelian composition factor isomorphic to $^2D_n(3^\alpha)$. We also show that if $G$ is a finite group satisfying $|G|=|^2D_n(3^\alpha)|$, and $\Gamma(G)=\Gamma(^2D_n(3^\alpha))$, then $G\cong{}^2D_n(3^\alpha)$. As a consequence of our result, we give a new proof for a conjecture of Shi and Bi for $^2D_n(3^\alpha)$. Application of this result to the problem of recognition of finite simple groups by the set of element orders are also considered. Specifically, it is proved that $^2D_n(3^\alpha)$ is quasirecognizable by the spectrum.
Keywords: prime graph, simple group, recognition, quasirecognition.
Received: 28.07.2012
English version:
Mathematical Notes, 2014, Volume 95, Issue 3, Pages 293–303
DOI: https://doi.org/10.1134/S0001434614030018
Bibliographic databases:
Document Type: Article
UDC: 511.33
Language: Russian
Citation: A. Babai, B. Khosravi, “Quasirecognition by Prime Graph of $^2D_{n}(3^\alpha)$ where $n=4m+1\ge 21$ and $\alpha$ is Odd”, Mat. Zametki, 95:3 (2014), 323–334; Math. Notes, 95:3 (2014), 293–303
Citation in format AMSBIB
\Bibitem{BabKho14}
\by A.~Babai, B.~Khosravi
\paper Quasirecognition by Prime Graph of $^2D_{n}(3^\alpha)$ where $n=4m+1\ge 21$ and~$\alpha$ is Odd
\jour Mat. Zametki
\yr 2014
\vol 95
\issue 3
\pages 323--334
\mathnet{http://mi.mathnet.ru/mzm10421}
\crossref{https://doi.org/10.4213/mzm10421}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3298886}
\zmath{https://zbmath.org/?q=an:06434338}
\elib{https://elibrary.ru/item.asp?id=21276984}
\transl
\jour Math. Notes
\yr 2014
\vol 95
\issue 3
\pages 293--303
\crossref{https://doi.org/10.1134/S0001434614030018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000335457300001}
\elib{https://elibrary.ru/item.asp?id=22055321}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899668970}
Linking options:
  • https://www.mathnet.ru/eng/mzm10421
  • https://doi.org/10.4213/mzm10421
  • https://www.mathnet.ru/eng/mzm/v95/i3/p323
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025