|
This article is cited in 11 scientific papers (total in 11 papers)
New Lower Bound for the Chromatic Number of a Rational Space with One and Two Forbidden Distances
E. I. Ponomarenkoa, A. M. Raigorodskiiba a Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moskovskaya obl.
b M. V. Lomonosov Moscow State University
Abstract:
A new lower bound for the chromatic number $\chi({\mathbb Q}^n)$ of the space ${\mathbb Q}^n$ is obtained.
Keywords:
chromatic number, rational space with forbidden distances, Nelson–Hadwiger problem, independence number of a graph, Stirling's formula.
Received: 07.08.2013 Revised: 03.04.2014
Citation:
E. I. Ponomarenko, A. M. Raigorodskii, “New Lower Bound for the Chromatic Number of a Rational Space with One and Two Forbidden Distances”, Mat. Zametki, 97:2 (2015), 255–261; Math. Notes, 97:2 (2015), 249–254
Linking options:
https://www.mathnet.ru/eng/mzm10383https://doi.org/10.4213/mzm10383 https://www.mathnet.ru/eng/mzm/v97/i2/p255
|
Statistics & downloads: |
Abstract page: | 476 | Full-text PDF : | 187 | References: | 88 | First page: | 89 |
|