Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 97, Issue 3, Pages 323–335
DOI: https://doi.org/10.4213/mzm10381
(Mi mzm10381)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the Method of Two-Sided Continuation of Solutions of the Integral Convolution Equation on a Finite Interval

A. G. Barseghyan

Institute of Mathematics, National Academy of Sciences of Armenia
Full-text PDF (503 kB) Citations (1)
References:
Abstract: The paper is devoted to the development of the method of two-sided continuation of the solution of the integral convolution equation
$$ S(x)=g(x)+\int _{0}^{r} K(x-t)S(t)\,dt,\qquad 0<x<r,\quad r< \infty, $$
with an even kernel function $K\in L_{1} (-r,r)$. Two continuations of the solution $S$ are considered: to $(-\infty, 0]$ and to $[r,\infty)$. A Wiener–Hopf-type factorization is used. Under invertibility conditions for some operators, the problem can be reduced to two equations with sum kernels:
$$ H^{\pm } (x)=q_{0}^{\pm } (x) \mp \int _{0}^{\infty } U(x+t+r)H^{\pm } (t)\,dt,\qquad x>0,\quad U\in L^{+} . $$
Applied aspects of the realization of the method are discussed.
Keywords: integral convolution equation, two-sided continuation of a solution, kernel function, Wiener–Hopf-type factorization, Baxter–Hirschman method.
Received: 11.07.2013
English version:
Mathematical Notes, 2015, Volume 97, Issue 3, Pages 309–320
DOI: https://doi.org/10.1134/S0001434615030013
Bibliographic databases:
Document Type: Article
UDC: 517.968.2
Language: Russian
Citation: A. G. Barseghyan, “On the Method of Two-Sided Continuation of Solutions of the Integral Convolution Equation on a Finite Interval”, Mat. Zametki, 97:3 (2015), 323–335; Math. Notes, 97:3 (2015), 309–320
Citation in format AMSBIB
\Bibitem{Bar15}
\by A.~G.~Barseghyan
\paper On the Method of Two-Sided Continuation of Solutions of the Integral Convolution Equation on a Finite Interval
\jour Mat. Zametki
\yr 2015
\vol 97
\issue 3
\pages 323--335
\mathnet{http://mi.mathnet.ru/mzm10381}
\crossref{https://doi.org/10.4213/mzm10381}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3370520}
\zmath{https://zbmath.org/?q=an:06455264}
\elib{https://elibrary.ru/item.asp?id=23421521}
\transl
\jour Math. Notes
\yr 2015
\vol 97
\issue 3
\pages 309--320
\crossref{https://doi.org/10.1134/S0001434615030013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353566800001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928690400}
Linking options:
  • https://www.mathnet.ru/eng/mzm10381
  • https://doi.org/10.4213/mzm10381
  • https://www.mathnet.ru/eng/mzm/v97/i3/p323
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:659
    Full-text PDF :155
    References:219
    First page:1273
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024