Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 6, Pages 921–925
DOI: https://doi.org/10.4213/mzm10377
(Mi mzm10377)
 

This article is cited in 1 scientific paper (total in 1 paper)

Bounded Subharmonic Functions Possess the Lebesgue Property at Each Point

A. S. Sadullaeva, S. A. Imomkulovb, K. Kh. Rakhimova

a National University of Uzbekistan named after M. Ulugbek, Tashkent
b Navoi State Pedagogical Institute
Full-text PDF (404 kB) Citations (1)
References:
Abstract: It is proved that the restriction of a bounded subharmonic function in a domain $D\subset\nobreak \mathbb C$ to any real line $l\subset\mathbb C$ possesses the Lebesgue property at each point of $l\cap D$.
Keywords: subharmonic function, Lebesgue property, Lebesgue point, thin set, thin point, Borel set, Diophantine number, logarithmic capacity.
Received: 26.10.2013
Revised: 04.03.2013
English version:
Mathematical Notes, 2014, Volume 96, Issue 6, Pages 992–995
DOI: https://doi.org/10.1134/S0001434614110388
Bibliographic databases:
Document Type: Article
UDC: 517.518.1+517.574
Language: Russian
Citation: A. S. Sadullaev, S. A. Imomkulov, K. Kh. Rakhimov, “Bounded Subharmonic Functions Possess the Lebesgue Property at Each Point”, Mat. Zametki, 96:6 (2014), 921–925; Math. Notes, 96:6 (2014), 992–995
Citation in format AMSBIB
\Bibitem{SadImoRak14}
\by A.~S.~Sadullaev, S.~A.~Imomkulov, K.~Kh.~Rakhimov
\paper Bounded Subharmonic Functions Possess the Lebesgue Property at Each Point
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 6
\pages 921--925
\mathnet{http://mi.mathnet.ru/mzm10377}
\crossref{https://doi.org/10.4213/mzm10377}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3343653}
\zmath{https://zbmath.org/?q=an:06435068}
\elib{https://elibrary.ru/item.asp?id=22834457}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 6
\pages 992--995
\crossref{https://doi.org/10.1134/S0001434614110388}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000347032700038}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919897428}
Linking options:
  • https://www.mathnet.ru/eng/mzm10377
  • https://doi.org/10.4213/mzm10377
  • https://www.mathnet.ru/eng/mzm/v96/i6/p921
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:414
    Full-text PDF :183
    References:52
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024