Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 97, Issue 1, Pages 23–34
DOI: https://doi.org/10.4213/mzm10375
(Mi mzm10375)
 

This article is cited in 2 scientific papers (total in 2 papers)

On Schur's Conjecture in $\mathbb R^4$

V. V. Bulankinaa, A. B. Kupavskiib, A. A. Polyanskiib

a M. V. Lomonosov Moscow State University
b Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moskovskaya obl.
Full-text PDF (510 kB) Citations (2)
References:
Abstract: A diameter graph in $\mathbb R^d$ is a graph in which vertices are points of a finite subset of $\mathbb R^d$ and two vertices are joined by an edge if the distance between them is equal to the diameter of the vertex set. This paper is devoted to Schur's conjecture, which asserts that any diameter graph on $n$ vertices in $\mathbb R^d$ contains at most $n$ complete subgraphs of size $d$. It is known that Schur's conjecture is true in dimensions $d\le 3$. We prove this conjecture for $d=4$ and give a simple proof for $d=3$.
Keywords: diameter graph, Schur's conjecture, Borsuk's conjecture.
Received: 10.07.2013
Revised: 05.05.2014
English version:
Mathematical Notes, 2015, Volume 97, Issue 1, Pages 21–29
DOI: https://doi.org/10.1134/S0001434615010034
Bibliographic databases:
Document Type: Article
UDC: 514.12+519.157
Language: Russian
Citation: V. V. Bulankina, A. B. Kupavskii, A. A. Polyanskii, “On Schur's Conjecture in $\mathbb R^4$”, Mat. Zametki, 97:1 (2015), 23–34; Math. Notes, 97:1 (2015), 21–29
Citation in format AMSBIB
\Bibitem{BulKupPol15}
\by V.~V.~Bulankina, A.~B.~Kupavskii, A.~A.~Polyanskii
\paper On Schur's Conjecture in $\mathbb R^4$
\jour Mat. Zametki
\yr 2015
\vol 97
\issue 1
\pages 23--34
\mathnet{http://mi.mathnet.ru/mzm10375}
\crossref{https://doi.org/10.4213/mzm10375}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3370490}
\zmath{https://zbmath.org/?q=an:06459049}
\elib{https://elibrary.ru/item.asp?id=23421491}
\transl
\jour Math. Notes
\yr 2015
\vol 97
\issue 1
\pages 21--29
\crossref{https://doi.org/10.1134/S0001434615010034}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350557000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84941653980}
Linking options:
  • https://www.mathnet.ru/eng/mzm10375
  • https://doi.org/10.4213/mzm10375
  • https://www.mathnet.ru/eng/mzm/v97/i1/p23
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:501
    Full-text PDF :207
    References:61
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024