Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 6, Pages 827–848
DOI: https://doi.org/10.4213/mzm10372
(Mi mzm10372)
 

This article is cited in 7 scientific papers (total in 7 papers)

Best Mean-Square Approximations by Entire Functions of Exponential Type and Mean $\nu$-Widths of Classes of Functions on the Line

S. B. Vakarchuk

Alfred Nobel University Dnepropetrovsk
Full-text PDF (652 kB) Citations (7)
References:
Abstract: For the classes $L^r_2(\mathbb{R})$, $r\in \mathbb{Z}_{+}$, we establish the upper and lower bounds for the quantities
$$ \chi_{\sigma,k,r,\mu,p}(\psi,t):=\sup\biggl\{\mathcal{A}_{\sigma} (f^{(r-\mu)})\Bigm/\biggl(\int_0^t \omega^p_k(f^{(r)},\tau) \psi(\tau)\,d\tau\biggr)^{1/p}:f \in L^r_2(\mathbb{R})\biggr\}, $$
where $\mu, r \in \mathbb{Z}_{+}$, $\mu \le r$, $k \in \mathbb{N}$, $0< p \le 2$, $0< \sigma <\infty$, $0<t \le \pi/\sigma$, and $\psi$ is a nonnegative, measurable function summable on the closed interval $[0,t]$ and not equivalent to zero. In the cases $\chi_{\sigma,k,r,\mu,p}(1,t)$, where $\mu\in \mathbb{N}$, $1/\mu\le p \le 2$, and $\chi_{\sigma,k,r,\mu,2/k}(1,t)$, where $0<t \le \pi/(2 \sigma)$, we obtain the exact values of these quantities. We also obtain the exact values of the average $\nu$-widths of classes of functions defined in terms of the modulus of continuity $\omega^{*}$ and the majorant $\Psi$.
Keywords: entire function of exponential type, best mean-square approximation, average $\nu$-width, modulus of continuity, Jackson-type inequality, Fourier transform, Plancherel's theorem, Paley–Wiener theorem, Hölder's inequality, majorant, Kolmogorov width, Bernstein width, Bernstein's inequality.
Received: 09.08.2013
Revised: 10.12.2013
English version:
Mathematical Notes, 2014, Volume 96, Issue 6, Pages 878–896
DOI: https://doi.org/10.1134/S000143461411025X
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: S. B. Vakarchuk, “Best Mean-Square Approximations by Entire Functions of Exponential Type and Mean $\nu$-Widths of Classes of Functions on the Line”, Mat. Zametki, 96:6 (2014), 827–848; Math. Notes, 96:6 (2014), 878–896
Citation in format AMSBIB
\Bibitem{Vak14}
\by S.~B.~Vakarchuk
\paper Best Mean-Square Approximations by Entire Functions of Exponential Type and Mean $\nu$-Widths of Classes of Functions on the Line
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 6
\pages 827--848
\mathnet{http://mi.mathnet.ru/mzm10372}
\crossref{https://doi.org/10.4213/mzm10372}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3343642}
\zmath{https://zbmath.org/?q=an:06435055}
\elib{https://elibrary.ru/item.asp?id=22834448}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 6
\pages 878--896
\crossref{https://doi.org/10.1134/S000143461411025X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000347032700025}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919897432}
Linking options:
  • https://www.mathnet.ru/eng/mzm10372
  • https://doi.org/10.4213/mzm10372
  • https://www.mathnet.ru/eng/mzm/v96/i6/p827
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:486
    Full-text PDF :192
    References:244
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024