Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 94, Issue 6, Pages 846–856
DOI: https://doi.org/10.4213/mzm10362
(Mi mzm10362)
 

This article is cited in 5 scientific papers (total in 5 papers)

Symmetrization of Condensers and Inequalities for Functions Multivalent in a Disk

V. N. Dubininab

a Far Eastern Federal University, Vladivostok
b Institute of Applied Mathematics, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok
Full-text PDF (472 kB) Citations (5)
References:
Abstract: Using the circular symmetrization of sets and condensers on Riemann surfaces, we establish new inequalities for multivalent functions with conditions on the critical values of the functions or on the coverings of concentric circles. Two-point distortion theorems, an inequality for the initial coefficients, and a lower bound for the modulus of functions (of diverse classes) $p$-valent in a disk are proved.
Keywords: circular symmetrization, symmetrization of condensers, multivalent function, two-point distortion theorem, Riemann surface, holomorphic (meromorphic) function.
Received: 07.02.2013
English version:
Mathematical Notes, 2013, Volume 94, Issue 6, Pages 876–884
DOI: https://doi.org/10.1134/S0001434613110242
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: V. N. Dubinin, “Symmetrization of Condensers and Inequalities for Functions Multivalent in a Disk”, Mat. Zametki, 94:6 (2013), 846–856; Math. Notes, 94:6 (2013), 876–884
Citation in format AMSBIB
\Bibitem{Dub13}
\by V.~N.~Dubinin
\paper Symmetrization of Condensers and Inequalities for Functions Multivalent in a Disk
\jour Mat. Zametki
\yr 2013
\vol 94
\issue 6
\pages 846--856
\mathnet{http://mi.mathnet.ru/mzm10362}
\crossref{https://doi.org/10.4213/mzm10362}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3227029}
\zmath{https://zbmath.org/?q=an:06274261}
\elib{https://elibrary.ru/item.asp?id=21276943}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 6
\pages 876--884
\crossref{https://doi.org/10.1134/S0001434613110242}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329130000024}
\elib{https://elibrary.ru/item.asp?id=21904374}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84891304236}
Linking options:
  • https://www.mathnet.ru/eng/mzm10362
  • https://doi.org/10.4213/mzm10362
  • https://www.mathnet.ru/eng/mzm/v94/i6/p846
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:542
    Full-text PDF :183
    References:76
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024