Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 95, Issue 6, Pages 836–841
DOI: https://doi.org/10.4213/mzm10358
(Mi mzm10358)
 

On the Convergence of Series in Spaces of Integrable Functions

I. R. Kayumov

Kazan (Volga Region) Federal University
References:
Abstract: A sufficient condition for the convergence of series in the spaces $L_p$ on a set of infinite measure is obtained.
Keywords: convergence of series in $L_p$, $\sigma$-additive measure, Hölder's inequality.
Received: 13.05.2013
Revised: 21.11.2013
English version:
Mathematical Notes, 2014, Volume 95, Issue 6, Pages 780–785
DOI: https://doi.org/10.1134/S0001434614050228
Bibliographic databases:
Document Type: Article
UDC: 517.521
Language: Russian
Citation: I. R. Kayumov, “On the Convergence of Series in Spaces of Integrable Functions”, Mat. Zametki, 95:6 (2014), 836–841; Math. Notes, 95:6 (2014), 780–785
Citation in format AMSBIB
\Bibitem{Kay14}
\by I.~R.~Kayumov
\paper On the Convergence of Series in Spaces of Integrable Functions
\jour Mat. Zametki
\yr 2014
\vol 95
\issue 6
\pages 836--841
\mathnet{http://mi.mathnet.ru/mzm10358}
\crossref{https://doi.org/10.4213/mzm10358}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3306221}
\elib{https://elibrary.ru/item.asp?id=21826508}
\transl
\jour Math. Notes
\yr 2014
\vol 95
\issue 6
\pages 780--785
\crossref{https://doi.org/10.1134/S0001434614050228}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338338200022}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903398043}
Linking options:
  • https://www.mathnet.ru/eng/mzm10358
  • https://doi.org/10.4213/mzm10358
  • https://www.mathnet.ru/eng/mzm/v95/i6/p836
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:577
    Full-text PDF :172
    References:75
    First page:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024