Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 1, Pages 138–147
DOI: https://doi.org/10.4213/mzm10352
(Mi mzm10352)
 

This article is cited in 10 scientific papers (total in 10 papers)

New Upper Bounds for the Independence Numbers of Graphs with Vertices in $\{-1,0,1\}^n$ and Their Applications to Problems of the Chromatic Numbers of Distance Graphs

E. I. Ponomarenkoa, A. M. Raigorodskiiba

a Moscow Institute of Physics and Technology (State University)
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: Upper bounds for the independence numbers in the graphs with vertices at $\{-1, 0,1\}^n$ are improved. Their applications to problems of the chromatic numbers of distance graphs are studied.
Keywords: graph, hypergraph, independence number, chromatic number, distance graph, Hamming distance, Nelson–Erdős–Hadwiger problem.
Received: 08.08.2013
Revised: 26.11.2013
English version:
Mathematical Notes, 2014, Volume 96, Issue 1, Pages 140–148
DOI: https://doi.org/10.1134/S000143461407013X
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: E. I. Ponomarenko, A. M. Raigorodskii, “New Upper Bounds for the Independence Numbers of Graphs with Vertices in $\{-1,0,1\}^n$ and Their Applications to Problems of the Chromatic Numbers of Distance Graphs”, Mat. Zametki, 96:1 (2014), 138–147; Math. Notes, 96:1 (2014), 140–148
Citation in format AMSBIB
\Bibitem{PonRai14}
\by E.~I.~Ponomarenko, A.~M.~Raigorodskii
\paper New Upper Bounds for the Independence Numbers of Graphs with Vertices in $\{-1,0,1\}^n$ and Their Applications to Problems of the Chromatic Numbers of Distance Graphs
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 1
\pages 138--147
\mathnet{http://mi.mathnet.ru/mzm10352}
\crossref{https://doi.org/10.4213/mzm10352}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3344281}
\zmath{https://zbmath.org/?q=an:1312.05110}
\elib{https://elibrary.ru/item.asp?id=21826532}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 1
\pages 140--148
\crossref{https://doi.org/10.1134/S000143461407013X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000340938800013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84906504784}
Linking options:
  • https://www.mathnet.ru/eng/mzm10352
  • https://doi.org/10.4213/mzm10352
  • https://www.mathnet.ru/eng/mzm/v96/i1/p138
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:590
    Full-text PDF :234
    References:49
    First page:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024