Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 5, Pages 701–708
DOI: https://doi.org/10.4213/mzm10343
(Mi mzm10343)
 

On the Norms of the Integral Means of Spherical Fourier Sums

O. I. Kuznetsovaa, A. N. Podkorutovb

a Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine
b Saint Petersburg State University
References:
Abstract: The paper deals with the spherical Fourier sums $S_r(f,x)=\sum_{\|k\|\le r}\widehat f(k)e^{ik\cdot x}$ of a periodic function $f$ in $m$ variables and the strong integral means of these sums $((\int_0^R |S_r(f,x)|^p \,dr)/R)^{1/p}$ for $p\ge1$. We establish the exact growth order as $R\to+\infty$ of the corresponding operators, i.e., the growth order of the quantities $\sup_{|f|\le 1}((\int_0^R |S_r(f,0)|^p\, dr)/R)^{1/p}$. The upper and lower bounds differ by their coefficients, which depend only on the dimension $m$. A sufficient condition on the function ensuring the uniform strong $p$-summability of its Fourier series is given.
Keywords: periodic function of several variables, spherical Fourier sums, exact growth order of operators, $p$-summability of Fourier series.
Received: 30.04.2013
Revised: 09.10.2013
English version:
Mathematical Notes, 2014, Volume 96, Issue 5, Pages 690–697
DOI: https://doi.org/10.1134/S000143461411008X
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: O. I. Kuznetsova, A. N. Podkorutov, “On the Norms of the Integral Means of Spherical Fourier Sums”, Mat. Zametki, 96:5 (2014), 701–708; Math. Notes, 96:5 (2014), 690–697
Citation in format AMSBIB
\Bibitem{KuzPod14}
\by O.~I.~Kuznetsova, A.~N.~Podkorutov
\paper On the Norms of the Integral Means of Spherical Fourier Sums
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 5
\pages 701--708
\mathnet{http://mi.mathnet.ru/mzm10343}
\crossref{https://doi.org/10.4213/mzm10343}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3343632}
\zmath{https://zbmath.org/?q=an:1314.42014}
\elib{https://elibrary.ru/item.asp?id=22834436}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 5
\pages 690--697
\crossref{https://doi.org/10.1134/S000143461411008X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000347032700008}
\elib{https://elibrary.ru/item.asp?id=24022807}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919904949}
Linking options:
  • https://www.mathnet.ru/eng/mzm10343
  • https://doi.org/10.4213/mzm10343
  • https://www.mathnet.ru/eng/mzm/v96/i5/p701
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:371
    Full-text PDF :166
    References:67
    First page:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024