Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2014, Volume 96, Issue 5, Pages 738–746
DOI: https://doi.org/10.4213/mzm10337
(Mi mzm10337)
 

This article is cited in 2 scientific papers (total in 2 papers)

On Algebraic Cohomology Classes on a Smooth Model of a Fiber Product of Families of K3 surfaces

O. V. Nikol'skaya

Vladimir State University
Full-text PDF (517 kB) Citations (2)
References:
Abstract: Hodge's conjecture on algebraic cycles is proved for a smooth projective model $X$ of the fiber product $X_1\times_CX_2$ of nonisotrivial one-parameter families of K3 surfaces (possibly with degeneracies) under certain constraints on the ranks of the transcendental cycle lattices of the general geometric fibers $X_{ks}$ and representations of the Hodge groups $\operatorname{Hg}(X_{ks})$.
Keywords: Hodge's conjecture on algebraic cycles, K3 surface, smooth projective model.
Received: 07.06.2013
Revised: 07.04.2014
English version:
Mathematical Notes, 2014, Volume 96, Issue 5, Pages 745–752
DOI: https://doi.org/10.1134/S0001434614110133
Bibliographic databases:
Document Type: Article
UDC: 512.73
Language: Russian
Citation: O. V. Nikol'skaya, “On Algebraic Cohomology Classes on a Smooth Model of a Fiber Product of Families of K3 surfaces”, Mat. Zametki, 96:5 (2014), 738–746; Math. Notes, 96:5 (2014), 745–752
Citation in format AMSBIB
\Bibitem{Nik14}
\by O.~V.~Nikol'skaya
\paper On Algebraic Cohomology Classes on a Smooth Model of a Fiber Product of Families of K3 surfaces
\jour Mat. Zametki
\yr 2014
\vol 96
\issue 5
\pages 738--746
\mathnet{http://mi.mathnet.ru/mzm10337}
\crossref{https://doi.org/10.4213/mzm10337}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3343637}
\zmath{https://zbmath.org/?q=an:06435043}
\elib{https://elibrary.ru/item.asp?id=22834439}
\transl
\jour Math. Notes
\yr 2014
\vol 96
\issue 5
\pages 745--752
\crossref{https://doi.org/10.1134/S0001434614110133}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000347032700013}
\elib{https://elibrary.ru/item.asp?id=24022531}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919880067}
Linking options:
  • https://www.mathnet.ru/eng/mzm10337
  • https://doi.org/10.4213/mzm10337
  • https://www.mathnet.ru/eng/mzm/v96/i5/p738
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:356
    Full-text PDF :149
    References:71
    First page:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024