Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 94, Issue 4, Pages 483–487
DOI: https://doi.org/10.4213/mzm10317
(Mi mzm10317)
 

This article is cited in 13 scientific papers (total in 13 papers)

Generalization of the Boundary Function Method for Solving Boundary-Value Problems for Bisingularly Perturbed Second-Order Differential Equations

K. Alymkulova, T. D. Asylbekova, S. F. Dolbeevab

a Osh State University
b Chelyabinsk State University
References:
Abstract: A bisingular boundary-value problem for an ordinary differential equation is considered. The asymptotics of the solution as the sum of an outer expansion and an analog of a number of functions of the boundary layer is constructed.
Keywords: bisingularly perturbed differential equation, boundary-value problem, boundary function method, maximum principle.
Received: 16.07.2012
English version:
Mathematical Notes, 2013, Volume 94, Issue 4, Pages 451–454
DOI: https://doi.org/10.1134/S0001434613090162
Bibliographic databases:
Document Type: Article
UDC: 517.928
Language: Russian
Citation: K. Alymkulov, T. D. Asylbekov, S. F. Dolbeeva, “Generalization of the Boundary Function Method for Solving Boundary-Value Problems for Bisingularly Perturbed Second-Order Differential Equations”, Mat. Zametki, 94:4 (2013), 483–487; Math. Notes, 94:4 (2013), 451–454
Citation in format AMSBIB
\Bibitem{AlyAsyDol13}
\by K.~Alymkulov, T.~D.~Asylbekov, S.~F.~Dolbeeva
\paper Generalization of the Boundary Function Method for Solving Boundary-Value Problems for Bisingularly Perturbed Second-Order Differential Equations
\jour Mat. Zametki
\yr 2013
\vol 94
\issue 4
\pages 483--487
\mathnet{http://mi.mathnet.ru/mzm10317}
\crossref{https://doi.org/10.4213/mzm10317}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3206109}
\zmath{https://zbmath.org/?q=an:06261060}
\elib{https://elibrary.ru/item.asp?id=20731795}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 4
\pages 451--454
\crossref{https://doi.org/10.1134/S0001434613090162}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000326052400016}
\elib{https://elibrary.ru/item.asp?id=21885470}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84886571391}
Linking options:
  • https://www.mathnet.ru/eng/mzm10317
  • https://doi.org/10.4213/mzm10317
  • https://www.mathnet.ru/eng/mzm/v94/i4/p483
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:528
    Full-text PDF :194
    References:48
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024