Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2013, Volume 94, Issue 4, Pages 483–487
DOI: https://doi.org/10.4213/mzm10317
(Mi mzm10317)
 

This article is cited in 13 scientific papers (total in 13 papers)

Generalization of the Boundary Function Method for Solving Boundary-Value Problems for Bisingularly Perturbed Second-Order Differential Equations

K. Alymkulova, T. D. Asylbekova, S. F. Dolbeevab

a Osh State University
b Chelyabinsk State University
References:
Abstract: A bisingular boundary-value problem for an ordinary differential equation is considered. The asymptotics of the solution as the sum of an outer expansion and an analog of a number of functions of the boundary layer is constructed.
Keywords: bisingularly perturbed differential equation, boundary-value problem, boundary function method, maximum principle.
Received: 16.07.2012
English version:
Mathematical Notes, 2013, Volume 94, Issue 4, Pages 451–454
DOI: https://doi.org/10.1134/S0001434613090162
Bibliographic databases:
Document Type: Article
UDC: 517.928
Language: Russian
Citation: K. Alymkulov, T. D. Asylbekov, S. F. Dolbeeva, “Generalization of the Boundary Function Method for Solving Boundary-Value Problems for Bisingularly Perturbed Second-Order Differential Equations”, Mat. Zametki, 94:4 (2013), 483–487; Math. Notes, 94:4 (2013), 451–454
Citation in format AMSBIB
\Bibitem{AlyAsyDol13}
\by K.~Alymkulov, T.~D.~Asylbekov, S.~F.~Dolbeeva
\paper Generalization of the Boundary Function Method for Solving Boundary-Value Problems for Bisingularly Perturbed Second-Order Differential Equations
\jour Mat. Zametki
\yr 2013
\vol 94
\issue 4
\pages 483--487
\mathnet{http://mi.mathnet.ru/mzm10317}
\crossref{https://doi.org/10.4213/mzm10317}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3206109}
\zmath{https://zbmath.org/?q=an:06261060}
\elib{https://elibrary.ru/item.asp?id=20731795}
\transl
\jour Math. Notes
\yr 2013
\vol 94
\issue 4
\pages 451--454
\crossref{https://doi.org/10.1134/S0001434613090162}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000326052400016}
\elib{https://elibrary.ru/item.asp?id=21885470}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84886571391}
Linking options:
  • https://www.mathnet.ru/eng/mzm10317
  • https://doi.org/10.4213/mzm10317
  • https://www.mathnet.ru/eng/mzm/v94/i4/p483
  • This publication is cited in the following 13 articles:
    1. Ybadylla Bekmurza uulu, “ӨZGӨChӨ ChEKITKE EE BOLGON SINGULYaRDYK KOZGOLGON ChEKTIK MASELENIN ChYGARYLYShYNYN ASIMPTOTIKASY”, BOSU, 2023, no. 4, 87  crossref
    2. D. A. Tursunov, K. G. Kozhobekov, Bekmurza uulu Ybadylla, “Asymptotics of solutions of boundary value problems for the equation εy+xp(x)yq(x)y=f”, Eurasian Math. J., 13:3 (2022), 82–91  mathnet  crossref  mathscinet
    3. Kozhobekov K.G., Erkebaev U.Z., Tursunov D.A., “Asymptotics of the Solution to the Boundary-Value Problems When Limited Equation Has Singular Point”, Lobachevskii J. Math., 41:1, SI (2020), 96–101  crossref  mathscinet  isi
    4. K. G. Kozhobekov, D. A. Tursunov, “Asimptotika resheniya kraevoi zadachi, kogda predelnoe uravnenie imeet neregulyarnuyu osobuyu tochku”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 29:3 (2019), 332–340  mathnet  crossref
    5. D. A. Tursunov, “Asimptoticheskoe reshenie bisingulyarnoi zadachi Robena”, Sib. elektron. matem. izv., 14 (2017), 10–21  mathnet  crossref
    6. D. A. Tursunov, “The asymptotic solution of the three-band bisingularly problem”, Lobachevskii J. Math., 38:3, SI (2017), 542–546  crossref  mathscinet  zmath  isi  scopus
    7. Keldibay Alymkulov, Dilmurat Adbillajanovich Tursunov, Recent Studies in Perturbation Theory, 2017  crossref
    8. D. A. Tursunov, U. Z. Erkebaev, “Asimptoticheskoe razlozhenie resheniya zadachi Dirikhle dlya koltsa s osobennostyu na granitse”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2016, no. 1(39), 42–52  mathnet  crossref  elib
    9. D. A. Tursunov, “Asimptoticheskoe razlozhenie resheniya obyknovennogo differentsialnogo uravneniya vtorogo poryadka s tremya tochkami povorota”, Tr. IMM UrO RAN, 22, no. 1, 2016, 271–281  mathnet  mathscinet  elib
    10. K. Alymkulov, D. A. Tursunov, “On a method of construction of asymptotic decompositions of bisingular perturbed problems”, Russian Math. (Iz. VUZ), 60:12 (2016), 1–8  mathnet  crossref  isi
    11. D. A. Tursunov, U. Z. Erkebaev, E. A. Tursunov, “Asimptotika resheniya zadachi Dirikhle dlya koltsa s kvadratichnymi rostami na granitsakh”, Izv. IMI UdGU, 2016, no. 2(48), 73–81  mathnet  elib
    12. D. A. Tursunov, U. Z. Erkebaev, “Asimptoticheskoe razlozhenie resheniya vozmuschennogo ellipticheskogo uravneniya, kogda predelnoe uravnenie imeet osobye tochki”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2015, no. 3(35), 26–34  mathnet  crossref  elib
    13. D. A. Tursunov, U. Z. Erkebaev, “Asimptotika resheniya zadachi Dirikhle dlya bisingulyarno vozmuschennogo uravneniya v koltse”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 25:4 (2015), 517–525  mathnet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:575
    Full-text PDF :215
    References:61
    First page:32
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025